Biodiversity Conservation and Community Development in Al-Makhrour Valley in Bethlehem, Palestine

Funded by a grant from the National Geographic Society and part by
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>1-Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2. Study area</td>
<td>4</td>
</tr>
<tr>
<td>2.1 General</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Valley and Battir as a UNESCO World Heritage Site</td>
<td>6</td>
</tr>
<tr>
<td>3-Literature review</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Geology</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Geography, Climate, and Ecology</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Vertebrate</td>
<td>14</td>
</tr>
<tr>
<td>3.4.1 Reptiles and Amphibians</td>
<td>14</td>
</tr>
<tr>
<td>3.4.2 Birds</td>
<td>15</td>
</tr>
<tr>
<td>3.4.3 Mammals</td>
<td>15</td>
</tr>
<tr>
<td>3.5 Invertebrate</td>
<td>16</td>
</tr>
<tr>
<td>3.5.1 Gastropods</td>
<td>16</td>
</tr>
<tr>
<td>3.5.2 Arachnids</td>
<td>17</td>
</tr>
<tr>
<td>3.5.3 Insects</td>
<td>18</td>
</tr>
<tr>
<td>3.6 Flora</td>
<td>19</td>
</tr>
<tr>
<td>3.7 Anthropological issues incl Agriculture</td>
<td>21</td>
</tr>
<tr>
<td>3.8 Ecotourism</td>
<td>29</td>
</tr>
<tr>
<td>3.9 Threats and conservation issues</td>
<td>36</td>
</tr>
<tr>
<td>3.10 Exploratory trips to the valley and map re-focus</td>
<td>41</td>
</tr>
<tr>
<td>4-References</td>
<td>43</td>
</tr>
<tr>
<td>5-Preliminary list of Relevant Websites (under development)</td>
<td>54</td>
</tr>
</tbody>
</table>
Preface

This project titled “Biodiversity Conservation and Community Development in Al-Makhrour Valley in Bethlehem, Palestine” was funded by National Geographic Society (USD $29,500) with some follow-up funding and expanded farmer support mechanisms provided by the Darwin Initiative. The project (2018-2019) was to research the current state of biodiversity and ecosystem services leading to conservation biodiversity in Al-Makhrour Valley of Bethlehem (Palestine). The project area, Al-Makhrour Valley, is the last remaining biodiversity rich area in the Bethlehem district. It is 2.6 Km2 of natural areas with agriculture and urban encroachment. We propose protecting ecosystems from biodiversity loss through surveying and assessing its components and creating conservation framework and management plan for habitats. Then bringing the data to decision makers and stakeholders and engaging and supporting the surrounding local communities (Al-Walaja, Battir, Beit Jala, and Al Khader) through enhancing sustainable agriculture and eco-tourism combined with relevant education and awareness programs. Through the initial meetings, and better understanding of ecosystems, Al-Khader area was replaced by the more proximal and more relevant village of Husan.

The main researcher Prof. Qumsiyeh was aided by Palestine Institute for Biodiversity and Sustainability (PIBS) and the Palestine Museum of Natural History (PMNH) at Bethlehem University (BU), with support from the Environmental Quality Authority and Experts such as Dr. Anton Khalileh (Birdss) Ms. Roubina Ghattas (plants), Mr. Talib Al-Harithi (Geology). Other key stakeholders (Ministry of Tourism and Antiquities, Ministry of Education, Ministry of Agriculture, local authorities, farmers, environmentalists and more, see below). The project is funded by the Darwin Initiative (grant number 25-030; internal BU grant number 10-295). We have a complementary grant from the National Geographic Society that covers exploratory issue of the valley and helped us cover some work unfunded by this grant (ie. the two grants are mutually reinforcing, but not competitive).

Project structure

Objective I. Gathering relevant data from literature and field work for assessing and conserving Biodiversity of Al-Makhrour area
1. Analyse relevant literature data
2. Conduct biodiversity inventory for Al-Makhrour valley
3. Hold town meetings in targeted four localities for SWOT analysis.
4. Prepare biodiversity management plan for the valley with conservation frameworks and restoration schemes.

Objective II. Provide economic benefits to the local communities in proximity to Al-Makhrour valley
1. Support the traditional farming practices through providing active farmers with necessary friendly agriculture inputs.
2. Open marketing channels to enhance marketing for local products
3. Organize 2 festivals for local products; in Battir and in Beit Jala in full cooperation with local farmers/cooperatives.
4. Promote ecotourism through (1) developing the valley’s path (signs and maps) (2) Support women associations/clubs to establish marketing points at each targeted locality, (3) Build partnership between sustainable tourism operators and local communities.

Objective III. Capacity building and awareness program
1. Workshop to present the Valley’s biodiversity management plans to stakeholders.
2. Training to strengthen capacity of local community to revive traditional farming and safeguard their cultural/natural landscapes, plan for successful agriculture festivals, and open marketing channels for their products through.
3. Training to strengthen capacity of local community to engage in tourism business opportunities.
4. Workshop networking between producer and consumer cooperatives
5. Advocacy campaign to support all above activities through newspaper and social media announcements, TV sessions, website, brochure, publications, etc.
6. Hold meetings in schools that explain the project, use educational material to raise awareness, initiate environmental clubs

1. Introduction

In the late 20th century the conservation of biological diversity became recognized as an urgent issue for humanity. This is largely due to the scientific observation of significant decline in biodiversity accompanying the industrialization that spread widely in the 19th and 20th centuries. Two key texts emerged from a number of preparatory meetings that rang the danger bell at the global level: Publication of the
Global Biodiversity Strategy and the adoption of the Convention on Biological Diversity (CBD) signed at the Earth Summit in Rio de Janeiro (both in 1992).

Palestine connects Africa with Eurasia and is in the western part of the Fertile Crescent where the first humans migrated out of Africa, and also where the first human agriculture developed (Qumsiyeh, 1996). The geologic activities over the past 100 million years, and especially the formation of the Great Rift Valley, ensured rich varied topography which resulted in a burst of speciation producing many endemic species of plants and animals. This is because of diverse habitats covering five ecozones (Central Highlands, Semi-Coastal Region, Eastern Slopes, Jordan Rift Valley, and Coastal Regions) and four biogeographical regions (Mediterranean, Irano-Turanian, Saharo-Arabian, and Sudanese/Ethiopian) (Whyte, 1950; Zohary, 1947; Por, 1975; Qumsiyeh, 1985). Climate is varied from cold winters with semi-permanent frost in mountains 1,000 meter above sea level (Mount Hermon) to semi-tropical climate in the lowest point on earth in the Dead Sea region at 400 meter under the sea level. Rainfall is between 1,000 mm in the highest mountains to less than 50 mm in arid regions. Temperatures also vary from freezing to over 35 C in summer months in the Wadi Araba areas (Isaac, 2002, Qumsiyeh, 1996). It is thus not surprising that this small country is biologically more diverse than some countries 10 times its size (Qumsiyeh, 1996). The mild weather, diverse fauna and flora, rich soils, and presence of wild seed species and certain animals in the Fertile Crescent stretching from Palestine to Iraq also allowed humans to go from being hunter-gatherers to developing an agricultural and nomadic shepherd life (McCorriston and Hole 1991; Eshed et al., 2004). The Fertile Crescent thus provided the first domesticated animals and plants (wheat, barley, lentils, goats, donkeys) and the first human civilizations.

Our region has undergone significant human-induced environmental changes including those caused by migrations, industrialization, climate change, and colonization among others. This had a huge impact on biodiversity but few studies have addressed this. In this chapter we review what is known about biodiversity in Palestine (a small but critical part of the Fertile Crescent) including highlighting threats and opportunities for conservation and sustainable living for both people and fauna and flora.

2. Study Site

2.1 General

The four biogeographical zones identified in Palestine (Mediterranean, Irano-Turanian, Saharo-Arabian, Ethiopian-Sudanese) identified in Palestine were mapped based on plant distribution by Zohary (1947) and have been used with little modification since. Soto-Berelov et al. (2015) refined and added to these things and noted changes both recent and in historic and prehistoric times. The Mediterranean Zone has special and rich biodiversity that is threatened and considered key hot-spot for biodiversity conservation (Myers et al., 2000). This Mediterranean Zone in Palestine stretches from the Haifa and Galilee region across the hills and slopes (especially those facing west to the Mediterranean zone all the way down to Hebron. In the southern region, we have areas designated as protected areas with Mediterranean Habitats especially in the Hebron region such as Al-Quff and Al-Qarn areas (Qumsiyeh et al. 2016).

Wadi Al-Makhour is a valley located about 7 km south of the old city of Jerusalem and about 6 km northeast of the old city of Bethlehem. It is connected to other valley systems stretches from the Walaja and Cremisan valleys to the South of Jerusalem and tak the water of the Makhour itself (between Beit Jala, Al-Khader, and Al-Walaja) to drain into the Battir and then Husan and Nahhalin valleys. Al-Makhroor is an important part of the system that refills the water aquifer of the Bethlehem District area, and the fresh water springs pass from the center of old trees planted there. The area is the last remaining biodiversity-rich area south of Jerusalem and in Bethlehem and Jerusalem districts. The valley is mentioned in early travel books (e.g. Robinson, 1856). Excavations in the valley show humans used the bounty of the valley from the Middle Bronze Age (Rapoport 2006) through the Iron Age, Persian, Hellenistic, and early Islamic Periods up until today (Dagan 2010).
Wadi Al-Makhrour sensu strictu is 2.6 Km² of natural areas interspersed with agriculture and rich flora and fauna (Amr et al., 2016) also incorporating an equivalent buffer zone of an area of more than 5 km²; this area was initially selected for study (Fig. 1). [See section below for adjustments done by expanding the target area]. It is also one of the richest biodiversity areas according to the government (Fig. 2) and of 13 important bird areas per BirdLife International (see below) in Palestine. It is also rich in cultural heritage, containing, among other monuments, old Roman tombs and wells and old Palestinian watchtowers. However, no environmental management plans or conservation programs have been implemented by any organization in the area. As the valley is located in Area C it suffers from diverse pressures: (1) habitat loss and land fragmentation; causing biodiversity loss, (2) challenging livelihood conditions as a result of the lack of economic motivations, no subsidies for farming practices, and inadequate markets for extra production and others products. It is an area estimated to have a rich biodiversity (see maps in Levin & Shmida 2007) and was designated by the Palestinian authority as a biodiversity hotspot (Fig. 2). The Bethlehem Governorate between Hebron and Jerusalem has only one remaining rich habitat based on our preliminary studies: that is the Makhrour Wadi and Hill System.

Figure 1. A map shows the location of Wadi Al-Makhrour in Bethlehem district.
2.2 The Valley and Battir as a UNESCO world heritage site

Battir in 2014 was submitted to UNESCO under title “Palestine, Lands of Olives and Vines, Cultural Landscape of Southern Jerusalem” and immediately included on the List of World Heritage in Danger, after it was acknowledged that the landscape was threatened by emerging and intensifying sociocultural and geopolitical transformations with the potential to cause irreversible damage to the site’s authenticity and integrity. The World Heritage Site stretches from Al-Makhrour Valley to Battir village to Al-Aion Valley in Hussan, and includes traditional footpaths, various human settlements that developed around the many springs that dot the slopes of the mountains and have contributed to the creation of a unique cultural landscape composed of agricultural terraces that are supported by dry-stone walls, agricultural watchtowers (manatir or qusoor), olive oil presses, ancient irrigation pools to collect the water flowing from the springs, ancient irrigation canals, and the remains of human settlements (khirab), all of which have been conserved by the local villagers (Battir, Hussan, and Beit Jala) for centuries.

As a part of its commitment, the Ministry of Tourism and Antiquities prepared a draft management and conservation plan for the WHS and buffer areas. The final management plan aims to expand on the existing MOTA (2018) draft management plan for this UNESCO site, but also to improve self-sustainability in order to conserve the outstanding universal value (OUV) for this area. The management includes a SWOT analysis for the area and detailed recommendations including an action plan. It also includes human capacity building activities.
The Al-Makhrou Valley that goes around Battir, starting from Beit Jala with the villages of Al-Walaja, Al-Khader and Husan, was chosen for this study and action plans towards sustainability because of rich fauna and flora, but also because it was listed as a UNESCO World Heritage Site in 2014 (Fig. 3 & 4). The world heritage property covers an area of 481 hectare core property, 631 hectare buffer zone, and 133 hectare residential area inside Battir for a total of 1112 hectares (see Fig. 3).

In its application to UNESCO, this is what was written to justify the inscription of the property on World Heritage List, which was approved in 2014 (MoTA 2018):

“The village of Battir, to the south of Jerusalem, was historically considered to be the jinan of Jerusalem, that is the garden of Jerusalem. Battir lies almost at the center of a system of very deep valleys that are very well supported by the yearlong availability of spring water that permits the cultivation of vegetables and fruit trees. In the areas along the slopes where water is not abundantly available, olives and vines were planted. The cultivation of these plants, on the very steep sloping sides of the valley, was only possible due to the creation of terraced fields with the use of dry-stone walls all along the valley. The terraces, together with a multitude of archaeological and architectural remains, testify to the presence of man in these green valleys that have been settled for at least 4,000 years.

The spring water is controlled by a unique system of distribution among the families of the village, using a very unique system of measurement to make sure that water benefits all the community. In areas of the valley that are far from the village, watchtowers or “palaces” were built for protection of the terraces. The olive trees, some of which are many hundreds of years old, are a testimony to the cultivation of olives in Palestine. Grapevines were also cultivated, though to a lesser quantity. The continuous dependence of the inhabitants of the area on agriculture as a major source of income has indeed contributed to the sustainability of this significant and harmonious landscape, which is evidence of the adaptation of the steep mountains into arable land. Also, their commitment to and hard work in maintaining the hundreds of metres of dry-stone walls preserved a landscape that is thousands of years old as a spectacular testimony to an ancient agricultural tradition. Farmers continue to tirelessly plant their land with seasonal vegetables and aromatic herbs, to take care of the vines and fruit trees and irrigate them using the Roman pools and irrigation channels, in addition to taking care of their olive trees, the symbols of peace.

The terraces are still in use today, despite the fact that the 1949 Armistice Line marking the boundary between Palestine and Israel cuts right through them, ignoring the natural contours of the valley. The emergency status of this nomination is linked to the fact that there is a plan in advanced stages to start the construction of the Israeli Wall, which would cut through this pristine valley landscape, marring this cultural landscape and cutting off farmers from fields they have cultivated for centuries. A railway link between Jerusalem and Jaffa, still in use today, winds its way along the lowest part of the valley. The people of Battir have always respected this link.

Battir is rightly considered to be the green heart of Palestine, even though its links with Jerusalem are not as strong as in the past. This dossier in the first of the serial nomination of Palestine, Land of Olives and Vines, which will present the agricultural and cultural landscape of Palestine in all its variations of landscape.

The draft management and conservation plan (MCP) stated: “realizing that a holistic Management and Conservation Plan is key to ensuring adequate respect and effective safeguarding of the property and its inherent Outstanding Universal Value (OUV), the MCP has been drafted taking into account the Desired State of Conservation (DSOCR) and the key Corrective Measures adopted by the World Heritage Committee” (MoTA 2018).

The maps below show the area included as core zone and buffer zone for the UNESCO world heritage site.
Figure 3. World Heritage site that includes Al-Makhrou valley near Husan and Battir (MOTA, 2018).

Figure 4. Satellite image showing core area (orange line) and included buffer zone (purple line) for the World Heritage site (MOTA, 2018).
In order to submit the application based on landscape considerations, the people of Battir, with help of international experts from France and Italy, performed a thorough and highly detailed mapping of the whole area, including Al-Makhrour. The resulting maps (e.g. Fig. 5 and 6) are a treasure trove of information on topography, land use etc.

![Figure 5. Map of the area used in supporting documents submitted to UNESCO.](image)

The study site is very picturesque, with deep valleys, some of them terraced for hundreds or thousands of years (part of the reason it is a UNESCO World heritage Site) and with typical Mediterranean vegetation (Fig. 7 and 8).
Figure 7. Typical valley structure in Al-Makhrour. Note different vegetation and terracing on the side facing the sun.

Figure 8. Wadi Al-Makhrour photo taken from the southern hill towards the north showing the Israeli colony of Har Gilo.
3. Literature Review

3.1 Introduction

Studies of biodiversity in the OPT were very limited, in contrast to those of nearby areas of Palestine (called Israel since 1948) and Jordan. Research in general still lags behind in the OPT (Qumsiyeh and Isaac, 2012). There are even fewer studies on the area of Al-Makhrour. Below we review available data.

As early as 1950, scientists warned of an environmental disaster in Palestine should the trends then evident persist (Ives, 1950). The environmental impacts of the geopolitical changes of the past 100 years have been dramatic (see relevant chapters in Qumsiyeh, 1996; Qumsiyeh, 2004), but direct studies of our environment are still in the early stages. Most studies of fauna and flora within Palestine were completed by Western visitors who came on brief trips to study the "Holy Land," and many of those visitors were connected to Western imperial powers such as France and England (e.g. Tristram, 1884).

The area had been sporadically studied before by visitors to the “Holy land,” from Tristram (1866, 1884) to Morton (1924) to David Harrison in the 1960s (Harrison and Bates, 1991). In the 1950s and 1960s there were some studies of fauna and flora by Israelis (mostly immigrant settlers). The most notable of these was a series called “Fauna Palaestina” issued by the Israel Academy of Sciences, and good published work continued into the 1980s (Levy and Amitai, 1980a, Tchernov and Yom-Tov, 1988, Zohary, 1973, Werner, 1988).

When Zionism was established in the late 19th century and the "Jewish Colonization Association" and later the “Jewish National Fund” (“Keren Keyemet l’Yisrael”) were formed, some Zionists saw the value of cataloging and understanding native animals and plants (including the native Palestinian people) and undertook studies of the region. An example of such a Zionist scientist was F. S. Bodenheimer (Bodenheimer, 1935). After Israel was founded, such studies of fauna and flora became commonplace and a number of studies were conducted, including, for example, those on plants (Zohary, 1972, Zohary, 1966), spiders (Zonstein and Marusik, 2013), and birds (Shirihai et al., 1996).

After the establishment of the Palestine Museum of Natural History (PMNH) in 2014, one of its missions is to identify the neglected biodiversity elements in the State of Palestine. Within the past three years, PMNH has produced a number of publications in peer reviewed journals on groups of local fauna, including freshwater snails, scorpions, butterflies, amphibians and reptiles. Vulnerable areas are of particular interest for further study because environmental degradation in Palestine has been accelerated with industrialization and large-scale deforestation, mainly as a result of the Israeli occupation and colonial settlers.

In the past 25 years there has been a revival of interest in studies of biodiversity among native Palestinians. Of course we have in no way even approached the level of publications or interest in nearby countries like Jordan or Israel, but we must guard against a decline of that interest in biodiversity research seen, for example, in Israel in association with industrialization (Dayan et al., 2011). We will discuss below examples of this revival of interest, including the establishment of a number of programs at universities (e.g. master programs in Environmental Studies at Al-Quds and Birzeit, and the Institute of Biodiversity and
Sustainability at Bethlehem University). But we must also separate scientific work from anecdotal notes and opinions on the Palestinian environment.

3.2 Geology

Palestinian geologic studies proliferated with the increased interest of Europeans in Palestine in the second half of the 19th century (see Benzinger 1895; Blanckenhorn, 1896, 1925; Lartet 1873; Lynch, 1852; Russell 1888). Recent literature shows that the tectonic movements resulted in multiple openings and closing of the sea basins and uplifts that produced the rich fossil fauna of the Eastern Mediterranean region (Lewy 1990; Ben-Avraham et al. 2002). Of the various geologic eras studied in our region, the Mid Cretaceous (particularly Cenomanian 93-100 MYA) provided an interesting assemblage of geological and paleontological material (Braun and Hirsch 1994; Philip 1978).

Most of the outcropping rocks in Bethlehem area were deposited under shallow warm sea conditions in the late Cretaceous times from the Late Cenomanian (95 million years ago) to Late Santonian (82 million years ago). The rock column starts with medium-thick fractured hard dolomitic limestone with thin marl interbreeds that grades upward to be of thick marls and chalks which dominate the whole geologic column with occasional occurrence of medium-hard, thin limestone beds. A major NE-SW fault led to the sinking of the eastern part of the area relative to its western part. The outcropping of these soft and thick rock successions made them a target for erosion factors leading to the formation of steep hillside around the city of Bethlehem, especially in the eastern and northern side. As well-known in geology, these thick limy strata were also suitable sites for karst phenomena and the formation of many caverns and underground caves, making the area an excellent locale for shelter for early man and his cattle (Fig. 9).

![Figure 9. Caverns that provide shelter for humans, domesticated animals, and also wildlife in the area.](image)

3.3 Geography, Climate, and Ecology

Interest in the geography of Palestine before the modern era started with Greek philosphers like Herodotus, who mentioned the Dead Sea in a “province of Syria,” and continued with travelers like Ibn Batuta, in the late Middle ages (see Avi-Yonah, 1962; Hütteroth and Abdulfattah 1977). In the 19th century there was renewed interest, with researchers employing more scientific principles (Ritter 1866; Hull and Fund 1888; Albright, 1921). Further geographic studies where done by Israeli geographers (e.g. Karmon 1971). The
geography of the area, and especially the human transformation of the landscape, was most prominently studied in the case of Battir, which is part of the area under study here (Abu Hammad 2016). Al-Makhrou is in the Mediterranean climatic zone; local elevations ranging from 710-920 m above sea level with annual rainfall is 550 mm. This zone is the largest in Palestine (Katsnelson 1964).

There will be dramatic impact of climate change on biodiversity and human health and sustainability (Harvell et al., 2002, Portnov and Paz, 2008, Rinawati et al., 2013) and this requires us to integrate educational, evolutionary, and ecological responses into models and potential remedies (Settele et al., 2005, Lavergne et al., 2010, Sternberg et al., 2015). Since Ecosystems play a significant role in human well-being, human beings must rise to the challenges, especially the one that threatens life on earth as we know it: climate change (UNDP, 2007). The world is now fully aware of the potentially devastating impact of human induced activities on climate change. While it is common sense that climate change impacts biodiversity mostly via habitat alterations, there is a challenge of how to perform these studies (Rinawati et al., 2013). Benefiting industries and countries that burn a lot of fossil fuels have attempted frustrate work to stop the deterioration and at least moderate the human impact on our atmosphere. However, the scientific evidence is compelling (for example Intergovernmental Panel on Climate Change, 2007). International meetings were held and all serious scientists warned of the impending global challenge (see for example United Nations Framework Convention on Climate Change http://unfccc.int). The effect of climate change on biodiversity in our region is still poorly understood (Sternberg et al 2015).

The Al-Makhrou Valley is located to the northwest of the city of Bethlehem and is part of a valley system that starts from Beit Jala (the Cremisan Monastery or Wadi Ahmad area) around Al-Walaja then progresses through the villages of Al Khader, Battir, Husan, and Nahhalin, continuing to collect runoff along the way to reach major discharge on the Mediterranean via Wadi Es-Sant, while also filling the Western water aquifer (unfortunately much of the water resources here are extracted for the benefit of Israeli colonial settlers, who now control 93% of the water of the West Bank). The rainfall on the Western sides of the Jerusalem hills is much higher than on the Eastern sides.

The Al Makhrou area is well –known as the governorate's most fertile land and its traditional breadbasket. The valley is denominated as Important Bird Area (IBAs) (Birdlife International, 2018a) and was designated as a Key Biodiversity Area (Birdlife International, 2018b) at national and global levels. AL Makhrou Valley and its surroundings falls in the Mediterranean botanical and zoogeographical region (Zohary, 1973) and the Mediterranean biogeographical zone (Soto-Berelov, et al. 2012). It is also an important part of the hydrological system that replenishes the western aquifer. The mean annual temperature in this area is 16˚C. The annual precipitation is between 601mm-688 mm; its highest elevation reaches up to 804m above sea level. The soil is mainly a mixture of terra rossa and brown rendzina (Isaac, J. et-al, 2010).

The valley also encompasses a series of agricultural valleys extending along Al Makhrou Valley towards the west of Beit Jala, then towards the village of Husan, encircling the village of Battir, and extending to the neighboring village of Al Walaja to the northeast. The valley enjoys a strategic location, and the availability of springs attracted people who settled the area and adapted its steep landscape into arable land, through developing complex irrigation systems for the water supply. This led to the creation of dry walls terraces, agricultural watchtowers (manatir) locally known as palaces (qusoor), and olive presses. All these from a bountiful cultivation of olives and vegetables and other crops. The traditional system of irrigated terraces, which constitutes an integral part of the cultural landscape, is an outstanding example of technological expertise. The existing landscape reflects one of the oldest farming methods known to humankind and is an important source of livelihood for local communities (MoTA, 2013).

In addition, it is also an important eco-touristic asset in the area, as it provides beautiful green scenery, clean air, shadow and humidity, soil stability and fertility, and most importantly, a unique recreational site. Further, it offers great potential for environmental, cultural and historic education, as it is close to Palestinian urban centers and rural villages.
3.4 Vertebrates:

3.4.1 Reptiles and Amphibians

Reptile studies in Palestine began in the 19th century (Festa, 1894, Boettger, 1878, Tristram, 1884). There is a rich biodiversity of reptiles, both endemic and non-endemic elements, from various biogeographic zones: Ethiopian, Mediterranean, Saharo-Arabian, and Irano-Turanian (Werner, 1988). While significant studies on the reptiles in the areas occupied by Israel since 1948 have been conducted, there are few studies by local scientists on the herpetology of the State of Palestine. A single publication on the reptiles of Gaza Strip was published by (Abd Rabou et al., 2007b) and included 18 species of reptiles. Recently, the Palestine Natural History Museum reported on a collection of reptiles from several localities within the Palestinian Territories. Distributional data for 36 species belonging to 13 families are given (Handal et al., 2016). Reptiles are diversified and include 17 families (Tortoises: Bataguridae and Testudinidae; Lizards: Agamidae, Anguidae, Chamaeleonidae, Gekkonidae, Phyllodactylidae, Lacertidae, Scincidae and Varanidae; Snakes: Leptotyphlopidae, Typhlopidae, Boidea, Colubridae, Atractaspidae, Viperidae and Elapidae) with a total of 81 species and subspecies.

The Museum has documented three species of reptiles in Al-Makhour (Handal et al. 2016): Testudo graeca terrestres, Chamaeleo chamaeleon and Micrelaps mulleri. Its scientists also reported some reptiles like Stellagama stellio from Owl Pelet in Wadi Makhour (Amr et al. 2016) (Fig. 10).

![Image of Stellagama stellio](image)

Figure 10. Lower jaw of *Stellagama stellio* recovered from Owl Pelet in Wadi Makhour (Handal et al., 2016).

Salman et al. (2014) studied amphibians (frogs and toads) from the West Bank – Palestine, results shows two species of frogs (*Pelophylax bedriagae* and *Hyla sp.*) that exist around our (PMNH) study area in Hussan and Artas. The area has three water springs (Kabryano spring, Umdan spring and Khdayer spring) two of them are no longer functioning, and the third could have amphibian species. A PMNH team observed a dead toad (*Bufo variabilis*) in in the Wadi Makhour area path in 16.X.2015 (Fig. 11). Surviving amphibians are represented by three families (Bufonidae, Ranidae, Hylidae) and three species. Toads, water frogs and tree frogs are represented by a single species (*Bufo virdis*, *Rana bedriagae* and *Hyla savignyi* respectively).
3.4.2 Birds

Birds were the most visible of the Palestinian fauna and much earlier scientific work has been done on them. But unlike the studies of other groups, there were also “layman” books and booklets that appeared for this visual group (Kharoob, 1992, Awad, 2009). Brett (1988) reported on the birds of prey in Palestine. The birds of the Gaza Strip were studied on several occasions. Abu Shammalah and Baha El-Din (1999) gave an account of the birds of Gaza. Abd Rabou et al., (2007c) recorded 118 bird species. Al-Safadi (1997) presented a comprehensive study on the breeding cycle of the Spur-winged Plover, *Hoploplerus spinosus*, in the sewage lagoon of Beit Lahia, Gaza Strip. So far, 373 bird species belonging to 23 Orders, 69 families, 21 Subfamilies, and 172 genera have been recorded from Palestinian areas (Awad et al., 2016). Birds have been studied intensively in Historic Palestine by Israeli ornithologists in the past 50 years, but in the Palestinian territories (West Bank and Gaza) they are poorly known and need investigation (Shirihai et al., 1996). A few studies have recently appeared on birds from the West Bank in different fields, like birds parasite (Awad et al., 2013; Awad and Rzād, 2014), the status of raptors like lesser kestrel, eagle owl, the passerine status from EEC ringing station (Amr et al., 2016; Awad et al., 2017; Backleh and Atrash, 2007) and studying protected areas like: Wadi Quff and Wadi Zarqa Al-Ulwi (Khalilieh, 2016; PMNH, 2018).

Al-Makhrour is considered part of the range of hills that go from Jerusalem to the West towards the Mediterranean. This and eastern areas of Jerusalem are considered as Important Bird Areas per international criteria (see Important Bird areas http://datazone.birdlife.org/site/results?cty=240&fam=0&gen=0). We published one paper on the diet of the Eagle owl in Wadi Al-Makhrour which included bird species like pigeons and a dove (Amr et al., 2016). The Environmental Education Center (EEC) is a ringing station for birds located at Taleta Qumi which is near WM. Data from this station could predict the Avifauna that could be found in the valley. EEC shows data of more than 70 species of passerine that ringed at the ringing station (Awad et al., 2017).

3.4.3 Mammals

Our knowledge of mammals in our area depends on literature from the 19th to the late 20th century, but with few studies in the West Bank (Tristram 1866, 1884; Bodenheimer, 1935; Atallah 1977; Harrison & Bates 1991; Qumsiyeh, 1985, 1996; Mendelssohn and Yom-Tov, 1999). In a study on two protected area: Wadi
Zarqa Al-Ulwi and Wadi Quff, mammals data start to appear on what we have in the West Bank (PMNH, 2018; Qumsiyeh, 2016). So far, a total of 92 species and subspecies of mammals are known to live in Palestine. These species belong to eight orders (Artiodactyla, Carnivora, Chiroptera, Soricomorpha, Erinaceomorpha, Hyracoidea, Lagomorpha and Rodentia).

Two studies done in Bethlehem area related to the Wadi Al Makhrour area with connection to mammals. In Qumsiyeh et al., (2014b). They reveal the diversity of mammals existing in the Bethlehem district, with 31 recorded species from 16 family, which includes data from Al Makhrour. On the other hand, a study done on the Eagle owl diet from Al Makhrour shows five species of mammals (Erinaceus concolor, Rattus rattus, Meriones tristrami, Microtus guentheri, and Rousettus aegyptiacus) and a domesticated cat (Amr et al. 2016).

Other observation in the past three years from the PMNH team recorded several species of mammals including (Vulpes vulpes, Canis aureus, Hyaena hyaena, Gazella gazelle, Procavia capensis [in Taleta Qumi], and Sus scrofa [in Battir]). According to Dolev et al. (2004), Hyaena hyaena is an endangered species in our region and near threatened globally, and the mountain gazelle is a near threatened species globally. Both of these require a re-assessment for our area.

3.5 Invertebrate

3.5.1 Gastropods

Previous studies on the freshwater snails of historical Palestine include Tristram (1884) and Germain and de Kerville (1922). Azim and Gismann (1956) included data on freshwater snails collected from the West Bank during a study on the snail intermediate host for schistosomiasis in south-western Asia. Recent studies on the snails of the genus *Melanopsis*, including records from the West Bank, were published by Heller et al. (2005). Recently Bdir and Adwan (2011, 2012) investigated the presence of larval stages of trematodes among freshwater snails collected from the Palestinian Territories. A recent study by Handal et al. (2015) reported on the taxonomy and distribution of the freshwater snail fauna in Palestinian. A total of 10 species of freshwater snails belonging to four families (Neritidae, Melanopsidae, Pulmonata and Thiaridae) in seven genera (*Galba, Haitia, Lymnaea, Melanoïdes, Melanopsis, Pseudoplotia*, and *Theodoxus*) were collected (Handal et al. 2015).

A recent master thesis on land snails in the West Bank showed the following species in the study area (Handal 2018): *Granopupa granum, Buliminus labrosus, Paramastus episomus, Pene bulimoïdes* (Fig. 12), *Euchondrus septemdentatus, Euchondrus chondriformis, Eopolita protensa jebusitica, Sphincterochila fimbriata, Monacha obstructa, Monacha syriaca, Metafruticicola fourousi, Xeropicta krynickii, Levantina caesareana, Levantina lithophaga*, and *Helix (Pelasga) engaddensis.*
Figure 12. Distribution and morphology of one of the land species reported in Al-Makhrou (Handal 2018).

3.5.2 Arachnids

In the Eastern Mediterranean region some initial faunal work on scorpions was done by Vachon (Vachon, 1953, Vachon, 1966) followed by some studies in Palestine (Levy and Amitai, 1980a). Qumsiyeh et al. (2013) reported on a collection of scorpions from the occupied Palestinian territories, including the first karyotypes of species from the Eastern Mediterranean region. They later published paper on a species of scorpion from the protected area of Wadi Al-Quff (Qumsiyeh et al., 2014a). Spiders in historic Palestine were studied by Zonstein & Marusik (2013).

Arachnids, including different order like: scorpion, spiders, camel spiders, and pseudoscorpions, are poorly studied in the Palestinian territories, and only few data show the distribution and systematics of them in the West Bank (Levy and Amitai, 1980; Qumsiyeh et al., 2013; 2014a). *Nebo hierichonticus* and *Scorpio*
maurus palmatus were recorded from the area of Al Makhour Valley (Amr et al., 2016; Qumsiyeh et al., 2013).

3.5.3 Insects

Insecta is a big group of living creatures, containing around 7 million species; the biggest biomass of living animals on earth (Erwin, 1982; Stork, 2018). We estimate that Palestine could have more than 35,000 species of the class Insecta. A few studies have been conducted in the Palestinian territories and we discuss those below.

Grasshoppers: Orthoptera is an order studied well in Historic Palestine in the years between 1893-1939 by Uvarrov, Swinton and Giglio-Tos (see Abusarhan et al., 2018). The most comprehensive recent study on the Orthoptera of Palestine was published by Fishelson (1985), but still did not show the distribution of species in the Palestinian territories. According to Abusarhan et al., (2017), four species of grasshopper were recorded from the area (Calliptamus coelestiresiensis, Acrotylus insubricus, Oedipoda aurea, and Tmethis pulchripennis asiaticus); more study is needed.

Dragonflies: Odonata is an order of insects divided into three suborders: Anisoptera (true dragonflies), Zygoptera (damselflies) and Anisozygoptera (a very small suborder considered intermediate between damselflies and dragonflies). A study shows some of the Anisoptera that exist in Wadi Al Makhour and surrounding area (Al Walaja and Hussan), and it shows the existence of three species: Trithemis arteriosa, Trithemis annulata, and Orthetrum chrysostigma (Adawi et al., 2017).

Praying mantids: Mantodea is an order of huge group of insects. Handal et al. (in Press) review the praying mantis in the west Bank and show the existence of 16 species out of 30 species from Historic Palestine, four species recorded from Al Makhour and Batter (Blepharopsis mendica, Empusa fasciata, Rivetina byblica, and Iris oratoria).

Beetles: Coleoptera is a huge order rich with species and reaches the 1.5 million worldwide (Stork, 2018). Many studies on beetles have been completed in Historic Palestine, but none of them show the species that exist in the Palestinian territories – the West Bank. One study done by the Palestine Museum of Natural History on subfamily Cetoniinae and shows that 2 two species exist Tropinota suturalis and Oxythyrea noemi (Handal and Amr, in Press). More studies need to be done on this field to have a list of species that exist in the area. A study of Coccinellidae in the Southern parts of the West Bank and the Jordan valley was recently completed by Najajreh (2018) at PMNH/PIBS-BU for a master thesis at Birzeit University (see Fig. 13).
Fig. 13. Distribution and morphologic variation of one of the species of Coccinellidae in the area including Wadi Al-Makhour (from Najajreh 2018).

Butterflies: Butterflies are poorly studied in the West Bank – Palestine. Most studies done around the Palestinian territories in the Historic Palestine discovered more than 90 species (Benyamini, 1983; 1997). A few studies show the diversity of butterflies in the Palestinian territories. Focusing on the southern West Bank researchers found 54 species in two protected areas, Wadi Zarqa Al-Ulwi with 30 species and Wadi Quff with 23 species (Abusarhan et al., 2016; PMNH, 2018; Qumsiyeh, 2016). Abusarhan et al., (2016) shows 12 species of butterflies collected from Wadi Al Makhour area belonging to four families and without including the family Papilionidae which two species observed by the PMNH team before but not published (Papilio machaon and Achon apollinus), species that recorded from WM: (Pieridae: Aporia crataegi augustior, Pieris brassicae, Pieris rapae leucosoma, Pontia daplidice, Colias croceus; Nymphalidae: Limenitis reducta schiffermuelleri, Melitaea telona, Polygonia egea; Lycaenidae: Lycaena thersamon, Polyommatus Icarus; Hesperiidae: Spialia orbifer hilaris, Syrichtus tessellum nomas).

3.6 Flora

In terms of the scope of literature available on flora in Palestine, there are records on this topic dating back to the late 19th century, when Guerin (1852), and Tristram (1892) wrote the Natural History of Palestine, which drew on the work done by the Palestine Exploration Fund to produce Flora of Palestine in the late 1880s. Palestine has abundant flora in spite of its small area, due to its geographical position as a meeting
point between Asia and Africa, where three phytogeographical regions intersect: Mediterranean, Irano-Turanian and Saharo-Arabian. There has been some studies of the flora of our region, but mostly focused on areas of Palestine inside the Green line (Post, 1933; Zohary, 1966, 1972, 1973; Feinbrun-Dothan, 1986; Zohary and Feinbrun-Dothan, 1986; Tchernov & Yom-Tov 1988; Danin, 1992; Fragman et al., 1999; Danin and Feinbrun-Dothan 1991; Danin 2004; Al-Shaikh et al., 2000) though not focusing on the area under study here. Historic Palestine is estimated to have 2655 plant species, while the occupied West Bank has a reported 1591 plant species (Al Sheikh et al, 2000). Another study by ARIJ in 2006 estimated that 2,076 plant species inhabit the West Bank and Gaza Strip alone (75.5 percent of species in Mandate Palestine), while 1,959 species in 115 families grow in the West Bank and 1,290 species in 105 families grow in the Gaza Strip, of which 117 species grow only in the Gaza Strip. Other studies were done nearby (Boulos, 1997; Danin, 2004). Much more work needs to be done in this field, such as the studies done in Wadi Al Quff, Wadi Al Zarqa Al Ulwi, and Wadi Janata/Wadi Ein Al Zarqa protected areas (Al Sheikh and Mahassneh, 2016; PMNH, 2018; Ghattas et al. 2018). Plants will be key to understanding habitat changes and to monitoring and evaluating the ecosystems in this area (Boyko, 1947).

Palestine comprises approximately 3 percent of the global biodiversity (Heywood & Watson 1995,) and contains a high density of species and a large number of endemic species (endemics are only found in restricted regions and therefore harbor unique genetic information), reaching up to 5 percent (120 endemics) of the total number of plants that grow in PT, such as caper, Palestinian sea blite, majoram, iris, fluellen and others (Ghattas 2008). Palestine is also known for its unique forested areas, which comprise 4.45 percent of the total area of PT (Ghattas et al, 2005).

Flora of the Al-Makhrour Valley is a Mediterranean type of flora, as the valley and the surrounding villages are located in the central highlands of Palestine that enjoy the Mediterranean ecosystem and the Mediterranean Plant Geo-Element. This ecosystem is the richest ecosystem in Palestine. It is woodland and semi-shrub undergrowth with high canopy cover (further research is needed to specify the canopy percentage) and has diverse plant forms of trees, shrubs/sub-shrubs, and herbaceous associations. A major part of it is a natural forest that comprises a maquis, garrigue and batha associations in different stretches along the valley. The natural forested area is one of the few green areas remaining in Bethlehem Governorate; it is famous for the abundance of oaks, carobs, terebinths, Palestinian lentisks, Palestine buckthorns, spiny hawthorns, prickly burnets, soft-hairy rockroses, headed thymes, wild marjoram and many other plants. Further studies are needed to identify better the available vegetation cover, its distribution and its status in the Al-Makhrour valley.

Fig. 14. CORINE Classification of Land Cover including “forested” areas in the valley (MOTA 2018).
3.7 Anthropological issues including agriculture

Palestine, including areas like Al-Makhrour, are part of the Fertile Crescent, where humans first developed agricultural practices, including the domestication of plants and animals. Wadi Al-Natuf as a valley in the northern West Bank was the first place archaeologists identified such areas and hence we speak of Natufian Agriculture (see Bar-Yosef 1998). Our cultural heritage relating to nature and agriculture is very extensive, for example the use of plants for medicinal purposes (Said et al. 2002). Further knowledge and use of this cultural heritage is intertwined with biodiversity conservation (Alves 2012; Hjelle et al. 2012). Wadi Al-Makhrur is a prime example of this because of existence of agricultural models practiced over thousands of years (Fig. 15). Cultural protection of this landscape is critical (Tengberg et al. 2012). There are few ethnoecological works on our region, starting in the 19th century (Canaan 1928; Crowfoot & Baldensperger 1932; Dafni 1984; Ali-Shtayeh 2000; Issa 2007; Nabulsi 2007; Lev 2006; Levin 2006; Gilbert and Mandaville 2013).

Ecosystem benefits come from reexamining human-nature interactions; i.e. the cultural-ecological landscape (Mitchell et al., 2009; Tengberg et al. 2012). Ethnobotanical methods are available with support from UNESCO (e.g. Martin 2004). In the context of Palestine, such studies can also enhance the attachment of people to their lands (Tsykalova 2015; Qumsiyeh 2018).

\[\text{For some Arabic studies, see:}\]

- معهد الأبحاث التطبيقية / القدس / "أريج" التاريخ الزراعي في فلسطين 2002.
- فلسطين الفصول الأربعة عادات وتقاليد ومواسم / نادي البطمة / مركز القدس للإعلام والاتصال 2012.
- عبد اللطيف عاشور التداوي بالأعشاب والنباتات / مكتبة ابن سينا / القاهرة _ مصر.
- جاد اسحق وعيسى اسحق 1992 / "الحاكورة دليل العمللي للعناية بالحديقة" التربة من اجل الوعي والمشاركة / القدس / فلسطين.
- نانيا تماري ناصر وماري جيجي تماري / "طلع الريحان والحنون", أزهار مطرزة من ربيع فلسطين 2009.
Population projections (NPC & UNFPA, 2016) reveal that the population of Palestine will increase from 4.8 million in 2017 to 6.9 in 2030, and will double by 2050, reaching 9.5 million, in spite of the significant fertility reduction. This is expected to be accompanied by a shift in the age structure of the population, as youth’s ratio (0-14) will drop to 35% in 2030 and down to 25% in 2050, with a slight increase in the percentages of older people (65 and above). In addition, the percentage of the working age population (15-64) is expected to increase from 57.8% to 61% in 2030 and will continue to rise to 67% of the total population in 2050. These trends will lead to increased pressure on the labor market and the need to create new jobs for the large number of working age residents. In addition, there will be increased pressure on natural resources, especially land, water and forests (MoA, 2016).

The Agriculture sector can cushion the effects of these ecological and social changes. It is an integral component of Palestinian communal, cultural, economic and social life. To date, agriculture has remained of great significance to Palestinians and their identity and culture, to which land and crops are central. Over and above its traditional role in the Palestinian economy, food and life, agriculture in Palestine is a symbol of Palestinian identity and stability on their land in the face of ongoing land confiscation due to prolonged occupation and the expansion of Israeli settlements, these depriving the Palestinians of their rights. Agriculture is an important productive sector in Palestine and has been the backbone of the Palestinian economy. The agricultural sector played a major role in the formation of the Palestinian gross domestic product (GDP). It is considered the main source of income for thousands of the Palestinian households either directly or indirectly, and it is contributing to the provision of food to the Palestinian people. It also absorbs a large numbers of the Palestinian labor force, especially during times of crisis.

Historically, the agricultural sector has played an important role in providing employment opportunities, especially in times of crisis, during which it was difficult to work in other sectors. Nevertheless, the area of cultivated land in Palestine has been rapidly declining over the years. For example the cultivated area decreased from 1,904,000 dunums during the growing season of 1994/1995 to 1,612,000 dunums during the growing season of 1998/1999, then it decreased to 1,034,901 dunums in the growing season of 2010/2011 (PCBS, 1997, 2001, 2011).
Data from the agricultural census published by the Palestinian Central Bureau of Statistics (PCBS) indicates that the agriculture sector contribution to GDP has been declining over the years. Where the contribution of agriculture to GDP was about 37% in the mid-seventies, it reached 2.8% only in the year 2016 (see Figure 16).

Fig. 16. Source: MoA, 2016 and El Zein R., 2017

There are several reasons behind the decline of the agricultural sector’s contribution to GDP over the years, but main causes are the growth in other sectors, such as services, construction, and information technology. These have caused a significant reduction of agriculture contribution to employment over the years. Since 2006, the agricultural sector has witnessed significant decline in the number of agricultural workers, for both women and men, due to restrictions imposed on the sector’s development and its low production. In 2006, labor force in the agricultural sector constituted 16.7% of total labor force (12.6% male, 35.1% female), falling to 8.7% in 2015 (PCBS, 2000-2015). The percentage of men working in the sector was estimated at 7.8% of male workers in 2015, while 13.1% of the total female workers were employed in agriculture, which indicates the relative importance of the agricultural sector to women (MoA, 2016) (see figure 17).

Fig. 17. Source: PCBS, 2000-2016
This is in addition to the unrelenting Israeli policies and procedures against Palestinian agriculture, including land confiscation, control over water resources, and the obstructing of exports to foreign markets. Climate change and harsh weather conditions have also had a negative impact on the production of some of the main Palestinian agro products, such as olives, olive oil, vegetables and field crops and forages, as it also has a negative impact on the numbers and production of livestock. Furthermore, the whole sector is facing other challenges: the expansion/encroachment of urban areas on agricultural lands, land fragmentation, lack of sovereignty over land and natural resources, weak capacities and human resources, weak basic agriculture infrastructure, weak internal and external assistance to the sector, and others.

Agriculture at Al Makhrour

Thousands of meters of dry-stone walls compose the terraces that extend along the valley of Wadi Al-Makhrour towards Battir. The dry-stone walls (senasel) create a flat earthen surface known as habaleh, and thus prevent soil erosion and preserve soil moisture. The traditional cultivation of olive trees is an essential component in the historical development of the cultural landscape systems in this area, and has multiple functions and meanings at the environmental, agricultural, socio-cultural, and symbolic levels. The cultivation of the olive tree involves low-density plantations, sometimes planted in an irregular pattern, with low labor and material inputs, and a manual harvest. Most of the olive tree plantations are rain-fed, and, with other crops such as fruit trees and field crops, occupy extensive hilly and mountainous areas that are susceptible to soil erosion due to water runoff (MoTA, 2014). The Palestinian natural trees, such as oak, can be found amongst the olives in terraces that are away from the village, while vines and fruit trees, such as apricots, almonds, and plums are planted near the villages. The agricultural activities related to olive cultivation are usually managed by individual families, and the olives and oil produced is used predominantly for self-consumption and for the local market.

The route from Wadi Al-Makhrour towards Battir is dotted with agricultural watchtowers. The majority of the agricultural watchtowers were constructed at an intermediate level of the property, and are used by the farmers to watch over their fields during the harvest season. Accordingly, the agricultural watchtowers are located away from the village.

Although the terraces near the villages have a few scattered olive trees, they are mainly associated with other crops, including grapevines, fruit trees, seasonal vegetables, and herbs. Some citrus trees, mainly lemon trees, are also found in these fields, but they are planted for domestic use only. The majority of the cultivation near the terraces depends on irrigation. The ancient pools and the water canals are used during the dry season to irrigate the terraces, and the distribution of the water among the farmers follows a traditional system known as shares (al-ma’dud).

Agriculture at project localities:

The four project targeted villages; Battir, Al Walaja, Husan and Beit Jala are Palestinian localities that surround the Al Makhrour Valley and rely on farming for either their own consumption or for enhancing their income by marketing their produce at the local level. The agriculture production in those areas is the backbone for food security at the household level. The cultivation production of the four localities forms the food basket for Bethlehem, the basket replete with vegetables, fruits, and field crops. A summary of the population size, cultivated areas and livestock by locality is below.

<table>
<thead>
<tr>
<th>Village</th>
<th>Population Number (2017)</th>
<th>Area (dunum)</th>
<th>Cultivated Area (dunum)</th>
<th>% of cultivated land of total area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battir</td>
<td>4696</td>
<td>6,795</td>
<td>3352</td>
<td>28.9</td>
</tr>
<tr>
<td>Village</td>
<td>Numbers of livestock</td>
<td>Crop type</td>
<td>Area of Field crops & forages</td>
<td>Area Fruit trees</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Sheep & Goats</td>
<td>Bee hives</td>
<td>broiler farms</td>
<td>layers farms</td>
</tr>
<tr>
<td>Battir</td>
<td>635</td>
<td>169</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Husan</td>
<td>558</td>
<td>72</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Al Walaja</td>
<td>846</td>
<td>73</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Beit Jala</td>
<td>567</td>
<td>56</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>2606</td>
<td>370</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

Source: Agricultural Directorate of Bethlehem, 2018

Table 3: Total area (in dunums), crop type, and number of livestock, in the targeted localities, 2017

Battir Village

Battir is a Palestinian village in the Bethlehem Governorate, located 6.4 km (horizontal distance) north-west of Bethlehem City. Battir is bordered by Beit Jala town and Al Walaja village to the east, Husan village to the west, Husan and Al Khader to the south, and the 1949 Armistice Line to the north (ARIJ, 2010a). Battir is a major Palestinian cultural landscape and is now a world heritage UNESCO site because of the traditional terrace farming system that is supported by a unique ancient egalitarian water distribution system and irrigation channels. It continues to fight the occupation peacefully though its cultural and natural heritage. Battir has always been considered the vegetable garden of Jerusalem due to the abundance of springs in the area. The traditional system of irrigated terraces within the nominated property is an outstanding example of technological expertise; its creations constitute an integral part of the cultural landscape. The farmers who worked and still work the land attest to the sustainability of this system and to its survival for the past 4,000 years (MoTA, 2014). The farmers in this village still use this system that delivers water to the terraces based on a simple mathematical calculation and a clear time-managed rotation scheme. The Battir cultural landscape encompasses ancient terraces, archaeological sites, rock-cut tombs, agricultural towers, traditional footpaths, olive oil presses and most importantly an intact water system, represented by a collection pool, channels, etc. The integrity of this traditional water system is guaranteed by the families of Battir, who depend on it.

The vegetables of Battir have always been well appreciated in the nearby towns and villages. The eggplants of Battir (beitinjan batttiri) are considered to be the best and the most famous landrace in the area. Vegetables are grown in the terraces all year around, and were once mainly sold in Jerusalem, although this situation changed after Battir was completely cut off from Jerusalem after the 1967 war. Still, even today, Battir is considered one of the major sources for vegetables for Bethlehem district.

The total area of Battir is about 6,795 dunums, of which 3352 dunums are cultivated land (3187 dunums of fruit trees, 137 dunums of open field of Vegetables, 4 dunums of vegetables are planted under plastic
houses, and 24 dunums of field crops and forages). Agriculture activities in Battir depend mostly on rainwater. As for irrigated fields they depend on water springs and domestic harvesting cisterns. For the livestock production in Battir there is 635 head of sheep and goats, 2 farms of broiler chickens, and 169 bees' hives (Agricultural Directorate of Bethlehem, 2018).

Al Walaja Village:

Al Walaja is a Palestinian village in the Bethlehem Governorate located 5km (horizontal distance) west of Bethlehem City. Al Walaja is bordered by Beit Jala town to the east, the 1949 Armistice Line to the north and west, and Battir and Husan villages to the south (ARIJ, 2010b).

The total area of Al Walaja is about 4,328 dunums of which dunums 1942 dunums are cultivated land (1344 dunums of fruit trees, 54 dunums of open field of Vegetables, 2 dunums of vegetables are planted under plastic houses, and 42 dunums of field crops and forages). Agriculture activities in Al Walaja depend mostly on rainwater. For irrigation they depend on water springs and domestic harvesting cisterns. For the livestock production in Al Walaja there is 846 head of sheep and goats, and 73 bees' hives (Agricultural Directorate of Bethlehem, 2018).

Husan Village:

Husan is a Palestinian village in the Bethlehem Governorate located 6.5km (horizontal distance) west of Bethlehem City. Husan is bordered by Al Khader town to the east, Battir village to the north, Nahhalin Village to the south, and the 1949 Armistice Line and Wadi Fukin village to the west (ARIJ, 2010c).

The total area of Husan is about 7,361 dunums of which dunums 1026 dunums are cultivated land (767 dunums of fruit trees, 216 dunums of open field of Vegetables, 2 dunums of vegetables are planted under plastic houses, and 41 dunums of field crops and forages). Agriculture activities in Husan depend mostly on rainwater. For irrigation they depend on water springs and domestic harvesting cisterns. For the livestock production in Husan there is 558 head of sheep and goats, 13 farms of broiler chickens and 72 bees' hives (Agricultural Directorate of Bethlehem, 2018).

Beit Jala City:

Beit Jala is a Palestinian city in the Bethlehem Governorate located 1.8 km (horizontal distance) west of Bethlehem City. Beit Jala is bordered by Bethlehem city to the east, Jerusalem city and Gilo settlement to the north, Al Walaja and Battir villages to the west, and Ad Doha city and Al Khader town to the south (ARIJ, 2010d). The total area of Beit Jala is about 9,749 dunums of which dunums 5289 dunums are cultivated land (5199 dunums of fruit trees, 55 dunums of open field of Vegetables, 2 dunums of vegetables are planted under plastic houses, and 33 dunums of field crops and forages). Agriculture activities in Beit Jala depend mostly on rainwater. For irrigation they depend on water springs and domestic harvesting cisterns. For the livestock production in Beit Jala there is 567 head of sheep and goats, 7 farms of broiler chickens, 1 farm of layer chickens and 56 bees' hives (Agricultural Directorate of Bethlehem, 2018).

Other Human Issues

The village of Battir and the valleys surrounding it, including Al-Makhrour, is now a World Heritage Site due to many factors, including the ancient, but still in use, agricultural heritage (like stone terracing, watch towers, irrigation systems, ancient olive presses etc) (Figs. 18-21).
There are also lime kilns called locally *gabbara* or *lattoun* ([Sarhan, 1989](#)) which were used to produce limestone for thousands of years ([Kingery et al. 1988](#)) (Fig. 17)

Fig. 18. Map of agricultural watchtowers and their state of conservation in the area of Battir and Wadi Al-Makhour (note concentration is near Beit Jala) and sample watch towers (from MOTA 2018).
There are also very ancient olive presses in the area (Fig. 20).
The village has an interesting history, its inhabitants having returned to their village after the ethnic cleansing of 1948 by means of acts of civil resistance in 1948-1949 (Botmeh 2006; Shokeh 2012).

Human caused climate change will have a great impact on agriculture and food security going forward (FAO 2018). Permaculture is now a dominant trendy form of ecological agriculture, but it is a modernization of methods used by our ancestors in harmony with nature (see Anabtawi 2016). Agroecological practices will be essential to sustainable agriculture (Wezel et al. 2014) and to biodiversity conservation (Scherr and McNeely 2008; Qumsiyeh et al. 2017).

3.8 Ecotourism

The global tourism industry is huge and growing with all attendant positives and negatives. The Middle East accounts for only 2% of that tourism economy (Neto, 2003). The concept of ecotourism (nature tourism with social and environmental conservation benefit) was developed in the 1980s as an alternative to mass tourism (Orams, 1995). Ecotourism is a tiny segment of a “tourism industry” that is valued at trillions of dollars worldwide (roughly 10% of world GDP). But ecotourism, if done properly and with well-designed programs, may play a significant role in reversing negative trends of world development and contribute significantly to the world Millennium Development Goals (Bricker et al., 2012).

In Palestine, the dominant form of tourism is religious pilgrimage, but other forms were considered in the national strategy on tourism (MNE 2013) and in the National Development Plan (MOPAD 2014; PECNDAR 1999). Further, most of the tourism economy has been taken over by Israel over the past few decades (Isaac, 2010a, b; 2016). For the State of Palestine, there is very limited tourism (again largely due to political issues) and this is essentially a trickle down economy from the tourist industry now largely Israeli (Isaac et al., 2016). Tourism indirectly contributes to 14% of Palestinian GDP but only 4% from direct tourism and only 2% of employment directly (PCBS, 2014). The Israeli occupation impact is highly destructive,

Fig. 21. View of irrigated terraces in 1892 (Palestine Exploration Fund).
especially in Palestinian lands close to settlements. These suffer daily attacks ranging from burning trees to settlers wastes (Isaac et al., 2016). But beyond this, there is lack of a clear national tourism development strategy, and often existing strategies are not implemented. A specific national ecotourism plan does not exist. There is also a lack of resources, financial and human, to manage, develop and promote Palestinian destinations. There is still a narrow vision of tourism, without innovative ideas to incorporate different key attractions, including sectors such as agriculture and nature. Agricultural tourism, for example (Jolly and Reynolds, 2005), can be promoted because Palestine is rich in agricultural traditions and history, being part of the Fertile Crescent where humans first developed domestication of plants and animals. Palestinians do not seem to have an adequate awareness of the advantages found in the cultural and natural heritage and what it can offer to local development plans and the local economy.

Most natural sites are under Israeli control in Historic Palestine and in most of the occupied territories (see section on protected areas). Thus it is not surprising that, like religious tourism, the nascent sector of ecotourism is also mostly dominated by Israel (see for example http://www.ecotourism.org.il/). In the past 20 years, alternative tourism (alternative to mass tourism) has developed in Palestine, involving, for example, political tourism and cultural tourism that is small scale, involving mostly home-stays, and organized by NGOs (like the Palestine Center for Rapprochement Between People, the Holy Land Trust, and the Alternative Tourism Group). A conference on development of eco-tourism in Palestine was held 8 November 2007 by The Centre for Cultural Heritage Preservation (CCHP) in partnership with Bethlehem University. This alternative tourism sometimes leads people on nature walks to enjoy the rich biodiversity and landscape beauty.

One of the best practices that our project has to consider while implementing the eco-tourism component is the one summarized as an outcome of the “Mediterranean Experience of Eco-Tourism” project; an ENPI – CBC MED project (1-A/1.2131/ MEET). The report within the Work package #4 “Methods and tools for survey of eco-tourism state of the art” is to be considered. The methodology will support the project to set best methods to enhance ecotourism at the AL Makhrour Valley, as it suggests best international tips for a successful ecotourism activity or product (Mauro et al. 2014). It identifies some success determining factors encountered during Best practices analysis, including management, infrastructure, facilities, services, conservation, local communities, cultural heritage, monitoring, and marketing aspects.

According to Ghrouf (2010), asking people about ecotourism suggests that the important areas in the Southern Jordan Valley are the Dead Sea, Mount of Temptation, and Ain Fashkha, while the obstacles to ecotourism there are lack of tourism investment, poor publicity, and lack of sovereignty over these areas. Another master thesis from Al-Quds University suggested the need for evaluating destinations of ecotourism in terms of certain indicators focused on local community development while conserving nature (see Rueff et al. 2008; Quttaineh 2015). Yet, in Palestine we have not one person qualified or trained professionally in ecotourism as a field. Much can be done to develop the tourism sector in Palestine in general but most of it is dependent on having sovereignty and political stability. These will not evolve as long as the conflict and occupation continue (PECDAR, 1999). But even under occupation, we can move forward, we can develop qualified human resources and structured programs that cater to different forms of tourism, including ecotourism. The largest alternative tourism in Palestine today is not ecotourism but is political tourism, such as ‘dark tourism,’ which is tourism of troubled spots and areas, for example where tragedies occurred, like in Deir Yassin, or visits to refugee camps (see Isaac 2010a; Isaac and Ashworth 2011). But we do see some very hopeful signs that some things can be done even under occupation, and not just in areas of dark tourism or the recruitment of international solidarity activists. Interest in walking and hiking through nature (much of this is ecotourism) has increased in the past two years. Some books came out regarding these, see (Szepesi 2012) with its attendant website http://www.walkingpalestine.org/

There is a very good book, “Palestine & Palestinians,” issued as a tour guide by the Alternative Tourism Group in Beit Sahour and available in many languages (http://atg.ps/guidebook). It includes elements of nature and helped many tourists practice at least partial ecotourism. Other groups promote tourism that includes ecotourism: see, for example, http://visitpalestine.ps/. There are also individual initiatives in
ecotourism, such as Bawadi Desert Eco-Tourism [https://www.facebook.com/Bawadi-Desert-Eco-Tourism-Palestine].

Additionally the EQA helped some municipalities with delineating ecotourism paths (e.g. Fig. 22).
Fig. 23. Masar Ibrahim network.

Fig. 24. Masar Ibrahim brochure.
Fig. 25. Key players in the tourism industry (including ecotourism) as envisioned by the Tourism Sector Export Strategy (Ministry of National Economy 2013). These are all issues that are touched upon in our proposal and have to be taken into consideration in executing the project.

There is an existing path in Wadi Makhrour already used for hiking (Figures 26 and 27), but it passes through private lands in many parts and is not marked and will need to be redesigned based on new criteria adopted at the ministerial level (EQA, Ministry of Tourism, Ministry of Agriculture) with help of this and other projects in the valley.
Fig. 2. Trail map of Wadi Makhrour.

Trails by Eng. Hassan Muamer
BLE, 2012.

Maintenance in the valleys and historical center of Battir.
Gola et al. (2010) explained why the case of the tourism paths in this area of Battir is critical for social and territorial development of the local people especially that all locals still connect to each other as if it is pre-1948 despite the obstacles (see Fig. 28)
Fig. 28. Battir and surrounding villages and their connections before 1948. This conception of space around Al-Makhrou is important to peoples’ culture and history and self-identity (after Gola et al. 2010).

In our plans to develop ecotourism in the area, it is also important to take existing ruins (ancient human habitations in the valleys) into consideration (fig. 29) in addition to the other items discussed above.
Fig. 29. Location of ancient human habitations (ruins) which could be rehabilitated and used as tourism attraction site and/or in redesigning ecotour paths (MOTA 2018).

Maqam’s (holy sites associated with saints) are also found in the valley (Fig. 28).

Fig. 30. Maqam Al-Sheikh Khattab (MOTA 2018).

3.9 Threats and conservation issues

There are few scientific research studies published in the last 25 years on nature conservation in Palestine. However there are important larger reports that we considered that contributed to our understanding of environmental issues in the State of Palestine including biodiversity conservation (Table 4)

Table 4. Key documents related to this project.

<table>
<thead>
<tr>
<th>Document</th>
<th>Source</th>
</tr>
</thead>
</table>

Biodiversity conservation and protected areas in particular are covered by the National Biodiversity Strategy and Action Plan (NBSAP, 1999). Objectives related to the protection of biodiversity and protected areas can be summarized as follows:

- Conservation of the Palestinian biodiversity, and the development and establishment of a representative protected areas system is listed as an immediate priority action. The Plan also includes project concepts on the “Development and management of a Palestinian protected areas system”, and the “Development of management plans/structures in designated protected areas based on biodiversity surveys and inventories”.
- Ensuring involvement in management of local communities in the establishment of protected areas.
- Assessment of capacity building needs and Palestinian priorities in biodiversity.

The plan also addressed gaps that must be filled to develop concepts in biodiversity and protected areas conservation. These gaps include: lack of primary scientific data, information and documentation on biodiversity in Palestine, lack and/or limited human resources. There are very few biologists, especially marine and wildlife biologists and taxonomists, oceanographers, conservation managers, etc.; inadequate legal frameworks and environmental policies on which to base all activities for the conservation and sustainable use of biodiversity in Palestine; shortcomings in the coordination among national and local stakeholder agencies in biodiversity; and inadequate awareness and commitment to biodiversity. The objectives of the NBSAP for Palestine (1999) are as follows:

- The conservation of Palestine’s biodiversity.
- The sustainable use of Palestine’s biodiversity.
- The enhancement of local knowledge and skills and the improvement of people’s attitudes for the conservation of biodiversity and the sustainable use of biodiversity.
- The equitable sharing of biodiversity benefits within Palestine.
- The development of Palestinian institutional and human resource capacity in the field of biodiversity.

The plan was addressed in the Palestinian Fifth National Report for CBD, discussed in the next subsection.

There has to be benefit sharing from conservation and biodiversity (Schroeder and Lucas, 2014). Görlach et al. (2011) summarized potential economic benefits from environmental conservation efforts (if successful) in the State of Palestine. Though this benefit assessment was mostly based on little data collected on the ground, it does highlight the significant potential financial impact of saving our environment. Here are examples:

- Air: If air pollution is cut by 50%, modeling suggests premature mortality could decline by 220 and morbidity by 440 per year. Monetary benefit could be 68 million euros per year.
- Water: Improved access to water services could significantly improve the quality of life for 1.2 million Palestinians. Improved wastewater treatment (perhaps concomitant with reduction of waste water in general) could have significant impacts on biodiversity, groundwater quality, and human health.
- Waste: Reducing solid waste would have significant impact on air quality, on environmental health, on human economy, and on biodiversity.

The use of plants and animals for humans is a field that needs much examination as it related to environmental conservation, especially in terms of sustainable use of resources. In Palestine, as elsewhere,
there is an interest in ethnobotany and ethnozoology (Ali-Shtayeh and Jamous, 2006; Ali-Shtayeh et al., 2014; Palevits and Yaniv, 2000; Said et al., 2002).

Poverty reduction and environmental conservation are directly linked and we are not able to do proper conservation without tackling poverty in developing countries (Adams et al., 2004). Further it is possible to use socioeconomic incentives at the periphery of protected areas, or even allow managed use of natural resources as a form of poverty reduction. This also incentivizes the local people to protect their environment (Sunderlin et al., 2005).

Modern conservation philosophy argues that the local buy-in is critical for success of conservation efforts. We in Palestine certainly need to think strategically about how people around protected areas are to benefit from protection. There are models in nearby areas; the Royal Society for Conservation of Nature (RSCN) in Jordan worked with local communities to ensure active buy-in via direct benefit from things like ecotourism and environmentally sensitive agriculture.

Religious attitudes can be of potential use to promote environmental awareness and conservation. Religious clerks (Moslem and Christian) can introduce many concepts of conservation and environmental practices in the Friday and Sunday sermons. Several authors have dealt with the ethical and divine relation of Islam to environment conservation (Amr & Quatrameez, 2002). Islamic teachings are full of orders and events that encourage conservation as the concept of “Al Himma”, to save water, sustain a clean environment and many others. Similarly in Christianity, basic teachings include many environmentally friendly practices. In Palestine, The Holy Land, with so many religious connections and about a million devout pilgrims per year, it is incumbent upon policy makers and stakeholders to research ways to reach out to those who are religious with the message of environmental conservation.

Though the dangers facing the Palestinian environment were articulated nearly seven decades ago (Ives 1950), there are few studies of threats effecting the biodiversity in the West Bank (e.g. Abdallah & Swaileh 2011; Hosh et al. 1992; Obeidi 2001; Weizman 2012’; Qumsiyeh 2013; Qumsiyeh & Amr 2017), and on Solid waste issues (Abu Thaher, 2005; Al-Khatib et al. 2007; Dudeen 2012). It is difficult to manage our nature reserves when most of them are under direct Israeli rule (ARIJ 2005; Garstecki et al. 2010). The biggest threat to human and biodiversity (fauna and flora) sustainability in Palestine is the issue of water (Tamimi 1996; Daibes & Daibes-Murad 2003; Gasteyer et al., 2012). There are many other threats including hunting (Helal & Khalilieh 2005; Yom-Tov 2003), climate change (Lautze and Kirshen 2009; Verner 2012), excessive use of pesticides (Sa’ed et al. 2010), colonial activities (Amr et al. 2016; Qumsiyeh et al. 2014, 2017), and pollution (Tal 2002).

The Wadi Al-Makhrour area under study here faces many threats. In its management plan of this world heritage site, MOTA (2018) stated some of these and suggested that there are certain Corrective Measures that can/should be adopted:

- Agreement to dismiss plans to build a “Wall” along the property, or within its surroundings,
- Implementation of projects to restore an appropriate state of conservation for the agricultural terraces and their components, including the watchtowers and dry stone walls throughout the property,
- Implementation of a project to restore traditional irrigation systems,
- Implementation of a project to put in place an adequate sewage system to protect water quality on the property,
- Preparation, approval, and implementation of a Conservation and a Management Plan for the property,
- Development and implementation of an active system of management that involves local communities and stakeholders,
- Preparation of a set of indicators for monitoring the property and implementation of a monitoring system,
- Development of protection methods for the property and its buffer zone.
Biodiversity as a concept in biology evolved in the 20th century as we started to understand the threats faced by ecosystems (Wilson & Peter 1988). International treaties after WWII started to address the needs for ecosystem maintenance / biodiversity conservation. We in Palestine as a nascent state need to ensure not only that we have signed all the relevant treaties but that we actually implement them. An excellent review entitled “Legal implications of accession of the State of Palestine to international conventions on resources and protection of natural resources” was published (Jaradat and Awad Allah, 2015). Joining international agreements consolidates the legal, political and international personality of a newly formed Palestinian State. In addition, it promotes the momentum of international solidarity, the sovereignty of the Palestinian State over its natural resources and geographical boundaries. These conventions and treaties are excellent podiums to inform the world of Israeli occupation violations on all aspects of Palestinian people rights. Here are some relevant agreements either signed or that Palestine tries to relate to on issues of the environment.

Convention on Biological Diversity (CBD): This is an international legal instrument for the conservation and sustainable use of biological diversity that came into effect in December 1993. It has been an important instrument to set goals and priorities to preserve biodiversity. The State of Palestine signed the agreement 2 April 2015. However, the agreement has not been ratified yet and is still in the stage of accession. To comply with the convention, EQA is looking to update the national biodiversity strategy and action plan. This includes preparing lists of endangered species and to increasing its and the national stakeholders capacities in the field of biodiversity. The Palestinian Authority submitted its fifth report in 2015 (EQA, 2015a). In 2012, the EQA published the report “The National Strategy, Action Programme and Integrated Financial Strategy to Combat Desertification in the Occupied Palestinian Territories”. It laid out plans and sought funding for many projects to educate people about, and combat, desertification. However, lack of funding and other challenges have impeded compliance and implementation.
Basel Convention Controlling Trans-boundary Movement of Hazardous Wastes and their Disposal:
The convention was adopted on 22 March 1989 by the Conference of Plenipotentiaries in Basel, Switzerland, in response to a public outcry following the discovery, in the 1980s, in Africa and other parts of the developing world of deposits of toxic wastes imported from abroad. The State of Palestine signed this agreement on 2.1.2015 and entered into force on 2.4.2015. In the past, it participated in meetings of the Arab States related to the Convention. Articles 12-13 of the Palestinian Environment Law are the legislative basis to prevent the entry of waste and hazardous substances to the Palestinian Territories. The EQA has also prepared a master plan for the management of hazardous materials and wastes and prepared as well a draft list of hazardous substances and wastes. Accession to this Agreement constitutes a fulcrum for Palestine to prevent waste and hazardous materials smuggled from Israel to Palestine. But waste continues to flow into the Palestinian areas from Israel (e.g. electronic waste from Israel recycled in Idhna near Hebron causes genotoxic damage (Khlaif and Qumsiyeh, 2016).

Cartagena Protocol: The Cartagena Protocol is an international treaty governing the movements of living modified organisms (LMOs) resulting from modern biotechnology from one country to another. It was adopted on 29 January 2000 as a supplementary agreement to the Convention on Biological Diversity and entered into force on 11 September 2003. Palestine is listed on Accession in Cartagena protocol, and was entered into force on April 2, 2015. This could be beneficial to Palestine, though as of now no studies exist on LMOs coming into the Palestinian territories (data needed).

United Nations Framework Convention on Climate Change (UNFCC): This treaty was negotiated at the earth summit in Rio de Janeiro in 1992 and aims to address the threat to human life and life on earth caused by climate change. Palestine accessed the UNFCC on 18.12.2015. The EQA prepared the national strategy to adapt to climate change and the formation of a national committee on Climate Change and the establishment of a unit for climate change within EQA. There are no direct materials in Environmental Law addressing the issue of climate change. And little is being done to curb the amount of hydrocarbon energy use in the OPTs. It is essential to deal with this issue.

United Nations Convention to Combat Desertification: This legally binding international agreement links environment and development to sustainable land management in order to combat desertification. The State of Palestine is not a member of this agreement. The EQA was the national focal point, and then transferred to Ministry of Agriculture. Efforts were made to prepare a national strategy to combat desertification and its action plan. Besides, EQA initiated the formation of a National Committee to Combat Desertification and in the process to host international experts to assist Palestine scientists in this sector, and to draft project proposals in sustainable management of arid land. The articles 16-18 of the Environment Act form the basis of legislation.

Unsigned Agreements but have Active Role: Palestine’s accession to the above and other conventions is listed here http://www.birdlife.org/datazone/country/palestinian-authority-territories/policy. The State of Palestine, although not a signatory, is active in a number of other international treaties that are not directly concerned with conservation and biodiversity, but related to other environmental issue.

The Barcelona Convention for the Protection of the Mediterranean Sea Against Pollution adopted in 1976 includes legal protocols on Dumping Protocol (from ships and aircraft), Prevention and Emergency Protocol (pollution from ships and emergency situations), Land-based Sources and Activities Protocol, Specially Protected Areas and Biological Diversity Protocol, Offshore Protocol (pollution from exploration and exploitation), Hazardous Wastes Protocol, and Protocol on Integrated Coastal Zone Management (ICZM). Even though Palestine is not a member of this agreement, the EQA is involved in some of the meetings and programs related to this Agreement, such a plan and program of the Mediterranean Action (MAP) and ICZM. The EQA have prepared a national plan for the protection of the marine environment and coastal areas. Some articles in the Environmental Law related to the marine environment constitute a national legislative basis for this agreement.
Two other important international treaties are the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the Convention on Migratory Species (CMS). CITES would be highly beneficial in curbing trade in endangered species, even though now Palestine has no control of its ports of entry (controlled by Israel). The potentiality of independence would make it more urgent to do this and prepare to implement our national strategy relating to the environment (EQA 2010). CMS should likewise be joined because 500 million birds migrate through Palestine (on annual migrations between Eurasia and Africa). This would ensure protection of this important migratory way station.

We can do some things to conserve nature in Palestine despite the persistent threats discussed above and thus begin to comply with ratified International treaties listed above (Qumsiyeh et al. 2017). For example, ethical consumption can be encouraged (Dajani and Isma’il 2014). Another area of significant work already done in other parts of Palestine (not Al-Makhrour) is to use systems of enhancing socio-economic value for local people for conservation (see Slocombe 1993; Görlach et al. 2011). The current project will address this need in the Al-Makhrour Valley. We also have some partners like the UNEP, which has already funded many conservation projects under its small grants program of the Global Environment Facility (GEF 2012, 2013). For example, they funded one of our (PMNH/PIBS-BU) projects that dealt with a buffer Zone for the Wadi Qana protected area. Similar study is envisioned for the buffer zones of Wadi Al-Makhrour, which is of significant ecological value (EQA 2017).

Palestinian national legislation is also needed to protect the traditional resource knowledge rights of local villagers and farmers as well as the rights of sovereignty over their cultural and genetic property. Thus, PGRs’ collectors, cultivators and protectors, who work in this sector after their fathers and grandfathers, and are going to teach their skills to their children (especially those living under poverty line, without employment), and utilize the wild PGRs from generation to generation, should, along with their knowledge, be protected, since they are the closet to nature. The indigenous knowledge forms the main reference on which Palestinians’ mainly rural communities rely while implementing conservation and production activities (ARIJ 2011). There has been little in depth participatory research into plant and animal indigenous knowledge in the West Bank and Gaza strip, for instance those of the Palestinian Bedouins.

It is also necessary to strengthen taxonomic and systematic research, ecology, habitats and wildlife population studies, indigenous genetic resources, GIS and remote sensing, and popular knowledge assessments. Implementing field measurement and assessment surveys to get a grip on existing biodiversity and the identification of those under threat or are presumed lost or extinct is a first step that should be taken. The results of the Palestinian research should also be used as an incentive to make the public aware of the secure measures while utilizing PGRs and emphasizing the importance of such resources and their methods of conservation. In addition, the Palestinian species lists and research findings should be documented and interlinked to the international databases, reports and/or lists. Palestinians must enhance the level of cooperation and coordination among academic and research institutions, whether they are governmental or non-governmental organizations that work in the field of biodiversity and to set out participatory investment in relevant projects, plans, and actions at international and national levels to raise quality of Palestinian biological resources at its different components.

We share the vision of MOTA (2018) that includes a “well-managed, conserved and protected property [] it’s Outstanding Universal Value and the conditions of authenticity and integrity of supporting attributes, socioeconomic status of the local community, presentation and interpretation are sustainably conserved, improved and enhanced enabling present and future generations to enjoy and appreciate it.”
1. References

Agricultural Directorate of Bethlehem, 2018

Biodiversity Indicator Development Framework, 2011 Biodiversity Indicators Partnership, found at https://www.bipindicators.net/national-indicator-development/bidf

Boettger, O. 1878. Reptilien Und Amphibien Aus Syrien. Bericht Über Die Senckenbergische Naturforschende Gesellschaft In Frankfurt Am Main, 1879, 57-84.

GEF. 2013. The Experience Of The Global Environment Facility's Small Grants Program In Egypt And The Occupied Palestinian Territory”. Report.

Important bird areas http://datazone.birdlife.org/site/results?cty=240&fam=0&gen=0 and http://datazone.birdlife.org/country/palestinian-authority-territories

Issa, Mahmoud. 2007. Oral History, Memory and the Palestinian Peasantry. Al-Majdal (published by Badil) 32:5-8

Jolly, D.A. and Reynolds, K.A., 2005. Consumer demand for agricultural and on-farm nature tourism. Small Farm Center, University of California-Davis

Khalilieh, A. Checklist of Birds of Palestinian Occupied Areas. Submitted.

2. Preliminary list of Relevant Websites (under development)

http://visitpalestine.ps/wadi-makhrour-just-sunset/
http://whc.unesco.org/en/list/1492
http://www.travelpalestine.ps/en/article/44/Battir
https://www.unrwa.org/userfiles/2011081763638.pdf (more about the political situation of Al Walaja but also good one)

القرير الوطني حول أهداف التنمية المستدامة