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A B S T R A C T

The ongoing 2023 Israel-Hamas War has severe and far-reaching consequences for the people, economy, food 
security, and environment. The immediate impacts of damage and destruction to cities and farms are apparent in 
widespread reporting and first-hand accounts from within the Gaza Strip. However, there is a lack of compre
hensive assessment of the war’s impacts on key Gazan agricultural land that are vital for immediate humani
tarian concerns during the ongoing war and for long-term recovery. In the Gaza Strip, agriculture is arguably one 
of the most important land use systems. However, remote detection of damage to Gazan agriculture is challenged 
by the diverse agronomic landscapes and small farm sizes. This study uses multi-resolution satellite imagery to 
monitor damage to tree crops and greenhouses, the most important agricultural land in the Gaza Strip. Our 
methodology involved several key steps: First, we generated a pre-war cropland map, distinguishing between 
tree crops (e.g., olives) and greenhouses, using a random forest (RF) model and the Segment Anything Model 
(SAM) on nominally 3-m PlanetScope and 50-cm Planet SkySat imagery, obtained from 2022 to 2023. Second, 
we assessed damage to tree crop fields due to the war, employing a harmonic model-based time series analysis 
using PlanetScope imagery. Third, we assessed the damage to greenhouses by classifying PlanetScope imagery 
using a random forest model. We performed accuracy assessments on a generated tree crop fields damage map 
using 1,200 randomly sampled 3 × 3-m areas, and we generated error-adjusted area estimates with a 95% 
confidence interval. To validate the generated greenhouse damage map, we used a random sampling-based 
analysis. We found that 64–70% of tree crop fields and 58% of greenhouses had been damaged by 27 
September 2024, after almost one year of war in the Gaza Strip. Agricultural land in Gaza City and North Gaza 
were the most heavily damaged with 90% and 73% of tree crop fields damaged in each governorate, respectively. 
By the end of 2023, all greenhouses in North Gaza and Gaza City had been damaged. Our damage estimate 
overall agrees with that from UNOSAT but provides more detailed and accurate information, such as the timing 
of the damage as well as fine-scale changes. Our results attest to the severe impacts of the Israel-Hamas War on 
Gaza’s agricultural sector with direct relevance for food security and economic recovery needs. Due to the rapid 
progression of the war, we have made the latest damage maps and area estimates available on GitHub (htt 
ps://github.com/hyinhe/Gaza).

1. Introduction

In October 2023, Palestinian armed groups, led by Hamas, broke 

through the border and attacked Israeli communities along the eastern 
Gaza Strip border, leading to a massive Israeli military response. The 
resulting war has caused a severe humanitarian crisis, including 
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extensive damage to buildings, infrastructure, and agriculture across the 
Gaza Strip, which poses serious threats to both immediate and long-term 
food security (FAO UNOSAT, 2024; UNEP, 2024). Agricultural produc
tion has been impacted by the war in multiple ways, including the 
destruction of agricultural lands through razing, heavy vehicle activity, 
bombing and shelling, destruction of water and irrigation infrastructure, 
and contamination of soils from the explosion of munitions (Insecurity 
Insight, 2024). Forced displacement, the risk of unexploded ordnance 
(UXO), or direct casualties can also cause farmland to become aban
doned in the war zone (Eklund et al., 2024; Yin et al., 2019). Assessing 
the damage to crops and greenhouses in this densely populated, small 
geographic area during an ongoing conflict without direct ground access 
presents significant challenges.

Remote sensing has been widely used for monitoring agricultural 
land use changes caused by natural hazards and societal disasters such as 
armed conflicts (Sticher et al., 2023; Witmer, 2015). Among all available 
information sources, remote sensing offers the most comprehensive 
view of terrestrial dynamics, enabling investigations of the direct envi
ronmental consequences of war. This is particularly important for 
monitoring conflict-affected areas where physical access is limited for 
security reasons. In the past, remote sensing techniques have been 
effectively applied to study the impacts of war on agricultural land cover 
in, e.g., the Caucasus (Buchner et al., 2022; Yin et al., 2018), South 
Sudan (Anderson et al., 2021; Olsen et al., 2021), Iraq (Eklund et al., 
2021; Jaafar et al., 2022), Syria (Eklund et al., 2017; Li et al., 2022), 
Ethiopia (Kerner et al., 2024; Weldegebriel et al., 2024), and Ukraine 
(Chen et al., 2024; Qadir et al., 2024). However, challenges remain in 
using remote sensing techniques to monitor conflict-related damage to 
agriculture. Firstly, existing studies often take a retrospective, 
bi-temporal approach by comparing land cover conditions before and 
after a conflict to assess the conflict impact, rather than taking a 
multi-temporal approach to monitoring changes throughout the course 
of the conflict. The devastating impacts and rapid progression of war 
necessitate timely information from remote sensing to uncover the 
extent, timing, and type of damage and inform decision-making for 
humanitarian aid efforts. Secondly, there are challenges in monitoring 
heterogeneous, small-scale, and dynamic croplands, particularly in the 
Global South (Rufin et al., 2019). Different crops and management 
practices create diverse spectral reflectance signatures captured by 
sensors, leading to potential confusion with other land cover types. For 
example, tree crops have similar spectral reflectance to natural forests, 
and greenhouses often resemble built-up structures in visual bands. 
Additionally, publicly available imagery from medium-resolution sen
sors like Landsat or Sentinel-2 often fails to capture agricultural land at 
the plot level. Fragmented landscapes, such as those in the Gaza Strip, 
require higher spatial and temporal resolution imagery to accurately 
monitor agricultural land.

Existing efforts to monitor the impacts of the 2023 Israel-Hamas War 
on agricultural land use, such as the Gaza Strip Agricultural Damage 
Assessment from the United Nations Satellite Centre (UNOSAT), provide 
nearly monthly estimates of agricultural land damage since the conflict 
began (UNOSAT, 2023). While these efforts have supported an overall 
understanding of changes during the war, limitations exist regarding 
imagery selection and methodology. First, the 10-m Sentinel-2 imagery 
used by UNOSAT may not be suitable for monitoring small-scale farms 
with agricultural holdings of less than 1 ha, much less detecting damage 
within such plots (PCBS, 2023a). Secondly, area estimates based on 
remote sensing-derived maps can be biased due to mapping errors. It is 
crucial to examine errors and uncertainties through a rigorous accuracy 
assessment to guide appropriate interpretation and use of remote 
sensing-derived maps (Olofsson et al., 2014). To the best of our 
knowledge, UNOSAT’s Gaza Strip Agricultural Damage Assessments do 
not report the accuracy of generated maps or account for the errors in 
the maps when reporting area estimates. Third, while the Sentinel-2 
imagery used to produce the UNOSAT maps is open-access, there is lit
tle information on the methodology used to produce the maps. This 

fundamentally challenges the replication of the analysis but also ob
scures the assumptions, limitations, and strengths of the approach.

Very high-resolution (VHR) datasets from commercial companies, 
such as the daily 3-m (nominal) PlanetScope and 50-cm (nominal) 
SkySat imagery from Planet Labs, present a great opportunity to 
enhance near real-time monitoring of small-scale farms, such as those in 
Gaza. In addition, deep learning algorithms facilitate the detection of 
small objects from VHR imagery, such as greenhouses (Chen et al., 2021; 
Ma et al., 2021). Our goal is to leverage the high temporal and spatial 
resolution PlanetScope and SkySat imagery to provide near real-time 
monitoring of damage to agricultural land in the Gaza Strip since the 
escalation of the conflict in October 2023. The focus of our study is on 
two key types of agricultural land in Gaza: tree crop fields and green
houses. Given their distinct spectral characteristics and temporal dy
namics, we apply different methodologies to monitor damage to each. 
To ensure the accuracy of our damage estimates, we generate 
error-adjusted area estimates using a sampling-based approach. This 
study aims to capture the spatial and temporal dynamics of agricultural 
damage across the Gaza Strip throughout the war by addressing three 
specific research objectives: 

1. Map the damage to tree crop fields using 3-m PlanetScope imagery 
and a harmonic time series model.

2. Identify individual greenhouses using 50-cm Planet SkySat imagery 
using a Deep Learning model and assess their damage using Planet
Scope imagery.

3. Generate error-adjusted area estimates of tree crop fields and 
greenhouse damage using a sampling-based approach.

2. Methods

2.1. Study area

The Gaza Strip, part of the Occupied Palestinian Territories, spans a 
small geographic area of 365 km2, measuring approximately 41 km in 
length with a width varying between 6 and 12 km along the Mediter
ranean coast. It has one of the highest population densities globally, with 
approximately 2.3 million people, the majority of whom are registered 
Palestinian refugees (PCSB, 2024). The Gaza Strip forms part of the 
Fertile Crescent where plant and animal domestication occurred around 
12,000 years ago. This transition from hunter-gatherer to sedentary 
communities led to some of the earliest agricultural settlements in the 
world and the establishment of ancient civilizations (Fuller and Stevens, 
2019; Nigro, 2023). Today, local agricultural production remains an 
important part of Palestinian society, contributing to food security in 
addition to maintaining cultural bonds to the land (Abufarha, 2008; 
Qumsiyeh, 2024). Agriculture contributed 11% to the GDP and helped 
alleviate the high unemployment rate of 45.1% before the war started in 
2023 (International Labour Organization, 2024). The agricultural sector 
has also long been the main source of exports for the Gaza Strip, 
contributing more than 45% of the total export flow (PCBS, 2023b). In 
2022, the total value of agricultural production in the Gaza Strip 
amounted to about USD 575 million, 54% of it from plant production 
(PCBS, 2023b). At the same time, 56% of the food consumed in the Gaza 
Strip in 2022 was imported.

Crops are cultivated across roughly 32% of the total land area across 
the five Gaza Strip governorates (PCBS, 2023a). Similar to the broader 
Palestinian Territories, small-scale family farming dominates with about 
74.2% of agricultural holdings covering less than 1 ha and the average 
size of each holding being 3.8 dunums (1 dunum equals 1,000 m2). 
Agricultural production includes fruit trees, vegetables, and field crops. 
Fruit trees are planted in orchards across the territory, of these, 80% 
were evergreen species, primarily olive and citrus trees, followed by 
grapes, guava, date palms, figs, and other species (PCBS, 2023a). Beyond 
their economic importance, tree crops, particularly olive trees, hold 
significant cultural heritage value in Palestinian culture (Abufarha, 
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2008; De Cesari, 2019). Additionally, 16,778 dunums were used for 
cultivating various vegetables under some form of protection such as 
surface tunnels, French tunnels, and protected cover (PCBS, 2023a). 
Greenhouses or protected cover structures that we focus on in this study 
are mainly made of plastic, predominantly growing tomatoes, cucum
bers, peppers, and strawberries (Ministry of Agriculture in Palestine, 
2024; personal communication).

Years of conflict have resulted in severe food insecurity for residents 
of the Gaza Strip (FAO, 2020), undermining efforts to meet the second 
Sustainable Development Goal (SDG) of ending hunger (Hassoun et al., 
2024). An Integrated Food Security Phase Classification (IPC) report 
estimated that 96% of Gaza’s population was facing high levels of acute 
food insecurity in September 2024 (IPC, 2024). Additionally, climate 
studies have identified the Eastern Mediterranean, including the Gaza 
Strip, as a climate change hotspot, characterized by extreme and wors
ening weather conditions such as intensified heatwaves, droughts, dust 
storms, and torrential rain events. These phenomena are expected to 
have detrimental impacts on Gazan agriculture and food production 
(Zittis et al., 2022). Key Mediterranean crops like olives, vines, legumes, 
wheat, barley, and maize are particularly vulnerable to the combined 
effects of prolonged droughts and increased heat stress (Aurelle et al., 
2022; Fraga et al., 2020).

2.2. Data

We used 3-m PlanetScope imagery as the main source for mapping 
damage to tree crop fields and greenhouses. We also used 50-cm Planet 
SkySat imagery to generate a pre-war greenhouse map as a baseline for 
damage assessment. We used all available PlanetScope imagery that had 
a cloud cover of <10% across the entire Gaza Strip from September 2022 
to September 2024. These images were collected by the PlanetScope 
satellite constellation of Dove satellites based on the newest PSB.SD 
instrument, which includes eight spectral bands: coastal blue (central 
wavelength = 443 nm), blue (490 nm), green I (531 nm), green (565 
nm), yellow (610 nm), red (665 nm), red edge (705 nm), and near- 
infrared (865 nm). The passing time of Dove satellites over the Gaza 
Strip varied from 7:30 to 8:30 a.m. local UTC+3 time. To ensure con
sistency across atmospheric conditions and minimize uncertainty in 
spectral response across time and location, we used the surface reflec
tance dataset derived from the PlanetScope Ortho Analytic Scene 
product that is radiometrically, sensor, and geometrically corrected. To 
obtain clear observations, we used the useable data mask (UDM2) band 
and removed pixels labeled as snow, shadow, haze, or cloud for each 
spectral band.

We also obtained 50-cm SkySat Pan-sharpened Multispectral Ortho 
Scene and Visual Ortho Scene products from Planet Labs from May 2023 
to August 2024. These images were used to: 1) map pre-war greenhouses 
and 2) facilitate visual interpretation for sample labeling. Given the very 
limited physical access due to security constraints, VHR imagery offers 
an alternative way of generating labels. Both SkySat products are 
orthorectified, pan-sharpened, and color-corrected with the former 
product having a 4-band (blue, green, red, near-infrared) composite, 
while the latter includes 3-band RGB imagery. In total, we obtained 390 
image strips, including 14 pre-war imagery strips. Additionally, we 
visually inspected these images and excluded the images that have 
geomatic errors larger than 2-m (i.e., 4 pixels).

We compared our results with UNOSAT’s monthly maps and esti
mates of agricultural and greenhouse damage through September 2024 
(FAO UNOSAT, 2024). The UNOSAT analysis relied on Sentinel-2 sat
ellite imagery collected between July 2017 and 2024. The analysis 
included a Normalized Difference Vegetation Index (NDVI) evaluation 
and a multitemporal classification to identify changes in orchards and 
other trees, field crops, and vegetables since October 2023.

2.3. Analysis

We first generated a pre-war tree crop field map using 3-m Planet
Scope imagery obtained between October 2022 and September 2023. 
We then detected damage to tree crop fields based on a harmonic model. 
Because of the small size of greenhouses, we used 50-cm SkySat imagery 
as well as PlanetScope imagery to detect pre-war individual green
houses. Then we applied a supervised classification to label the damage 
to each individual greenhouse from PlanetScope imagery. Lastly, we 
validated all maps generated and constructed error-adjusted area esti
mates using a sampling-based approach (Fig. 1).

2.3.1. Mapping damage to tree crops
We used spectral-temporal metrics from the PlanetScope images, 

widely used for land use mapping to map pre-war land cover (Yin et al., 
2017, 2020). These metrics include median, standard deviation, and 
percentiles at an interval of 20% (i.e., 20, 40, 60, and 80%) for each of 
the eight spectral bands and five derived indices: NDVI, Difference 
Water Index (NDWI), Modified Soil-adjusted Vegetation Index 
(MSAVI2), Modified Triangular Vegetation Index (MTVI2), and Trian
gular Greenness Index (TGI); this yielded a total of 78 metrics for clas
sification. We visually interpreted pre-war VHR images and generated 
training samples for six land cover and land use classes: tree crops (161 
samples), developed areas (150), barren land (30), shrubs and vegeta
tion (121), greenhouses (78), and water bodies (31) (Table 1).

We generated a pre-war land cover and land use map using a random 
forest classifier (Breiman, 2001). We set the number of variables that 
were randomly sampled as candidates at each split (mtry) to 9, which is 
the square root of the number of input variables (i.e., the 78 metrics), 
and the minimum size of the terminal nodes to 10. To reduce the salt and 
pepper effects in the classified land cover map, we used a minimum 
mapping unit of 10 PlanetScope pixels (90 m2).

We employed a harmonic model for each PlanetScope pixel identi
fied as tree crops in the pre-war period to assess damage during the war 
(Fig. 2). This model was fitted to the NDVI time series from September 
2022 to 2023, representing a typical growing season in the Mediterra
nean region, where the growing season typically begins in late autumn 
(around October) with the arrival of winter rains and concludes in early 
summer (around June) (Ortiz-Miranda et al., 2013). Using this model, 
we predicted NDVI values for the period following the onset of the war 
on October 7, 2023, assuming that the 2023–2024 growing season 
would have similar conditions to 2022–2023. We then compared the 
predicted NDVI values with the observed data and calculated residuals. 
A pixel was classified as damaged if the NDVI dropped by more than 
30%, based on our sensitivity testing, as a balance of omission and 
commission errors (Supplementary file, Table S1). To rule out the noise 
in the time series, such as undetected clouds of smoke, we required that 
the 30% decline be sustained over three consecutive dates. The timing of 
the damage was recorded, and we aggregated the occurrences monthly 
for validation purposes. For instance, a pixel would be mapped as 
damaged in July 2024 if it exhibited damage on July 31, 2024.

2.3.2. Mapping damage to greenhouses
We used both SkySat and PlanetScope imagery to identify pre-war 

greenhouses, leveraging the advantages of the very high spatial reso
lution of SkySat and the temporal information from PlanetScope images. 
To identify the footprint of individual greenhouses present before the 
war, we used the median RGB composite from SkySat imagery obtained 
before October 7, 2023. We used the Segment Anything Model (SAM), 
an image segmentation model by Meta AI (Kirillov et al., 2023), to 
generate objectives from the SkySat imagery epoch. The SAM is trained 
on the Segment Anything 1-Billion mask dataset (SA-1B) which includes 
11 million images. This makes the model highly robust in identifying 
object boundaries and differentiating between various objects. Although 
SAM can struggle with objects having unclear boundaries, such as nat
ural vegetation (Li et al., 2024), it performs well for objects with defined 
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shapes, like greenhouses. We also selected SAM due to its zero-shot 
learning capabilities, which require no additional training for unfamil
iar objects (Osco et al., 2023).

Since SAM segments the entire image and includes all object types, 
we labeled the generated segments using PlanetScope-derived land 
cover maps (Fig. 3). To minimize errors due to mixed pixels and geo
metric inaccuracies in SkySat imagery, we reduced the segment size by 
one PlanetScope pixel (3 m) and used a minimum segment size of 100 
m2. We then calculated the percentage of land cover types within each 
segment and classified a segment as a greenhouse if the majority of its 
land cover was mapped as a greenhouse according to our PlanetScope- 

derived land cover map. While alternative fine-tuned SAM models 
exist, such as one-shot learning models PerSAM and PerSAM-F (Zhang 
et al., 2023), our approach requires minimal inputs and leverages 
existing PlanetScope maps, which offer greater spectral and temporal 
information.

Since SkySat imagery strips do not cover the entire Gaza Strip at 
frequent time intervals such as PlanetScope, we therefore used Planet
Scope images to map monthly damage to greenhouses. A single green
house is considered damaged if more than 10% of the greenhouse- 
classified pixels within the segment representing the greenhouse foot
print or rooftop were lost since the war started. We assume that since the 
war started, the changes in greenhouses due to farmers’ activities such 
as constructing new greenhouses or modifying existing greenhouses are 
minimal. Our analysis was done at the object level with each segment 
including the statistical summaries calculated from all pixels within the 
segment, including the standard deviation and percentiles at an interval 
of 10% of each spectral band, and indices NDVI, NDWI, MSAVI2, MTVI2, 
and TGI. We reduced the size of each segment by 3 m from the boundary, 
considering the shadows and mixed pixels at the edges of greenhouses 
observed in the PlanetScope imagery (Supplementary file, Figure S1). 
We then stacked these statistical summaries and calculated a pair of 
PlanetScope images obtained before and during the war to classify 
damaged and undamaged greenhouses. The training samples were 
manually collected based on the visual interpretation of the SkySat 

Fig. 1. Flowchart of data analysis.

Table 1 
Land cover classes used in the pre-war land cover map.

Class Definition

Tree crops Orchards that include olive trees, nuts, and fruit trees
Developed area Built-up areas such as urban areas, roads, settlements, etc.
Barren land Unused land covered with little vegetation
Greenhouses Agricultural land covered structures enclosing house a plot of 

land typically used to grow vegetables and small fruit crops
Shrubs and 

vegetation
Shrublands and vegetation-covered land such as grassland, 
shrubs, and other annual crops (e.g., wheat)

Water bodies Lakes, ponds, and reservoirs

Fig. 2. Illustration of a harmonic model fitting for one pixel (noted as a red dot) classified as tree crops in the pre-war period but showing signs of damage by May 4, 
2024. The PlanetScope imagery obtained at different dates is shown here as RGB true color composites.

H. Yin et al.                                                                                                                                                                                                                                      Science of Remote Sensing 11 (2025) 100199 

4 



imagery.

2.3.3. Accuracy assessment and area estimate
To validate our pre-war tree crop fields map generated from Plan

etScope imagery, we randomly selected 1,200 samples across Gaza, each 
with a size of 3 × 3 m to match the PlanetScope pixel resolution. Each 
sample was labeled using Planet SkySat imagery (Fig. 4), and where 
SkySat imagery was unavailable, we utilized the PlanetScope time se
ries. Since our primary focus is tree crops, we aggregated all other land 
cover classes (e.g., developed areas, water bodies) into a single category. 
Accuracy metrics, including overall accuracy and F1 scores for tree 
crops, were reported based on the labeled samples.

We also used the same 1,200 samples to validate the map of tree crop 
field damage. We labeled these samples as one of four categories: 1) non- 
tree crops, 2) stable tree crops, 3) damaged tree crops, or 4) no data (i.e., 
no imagery coverage or uncertain class). If a sample was labeled as 
damaged, we recorded the estimated month of the damage. For instance, 
if a sample appeared undamaged in imagery from October 27 but 
showed damage in the next available imagery on November 5, we 
assigned the damage to November. Using the approach from Olofsson 
et al. (2014), we generated mapping accuracy as well as error-adjusted 
area estimates at a confidence interval of 95% for the damage of tree 
crops.

To validate the prediction accuracy of the identified greenhouses, we 
used metrics like Intersection over Union (IoU), Pixel Accuracy, and Dice 
Coefficient, following Osco et al. (2023). These metrics are widely used 
to evaluate the performance of image segmentation models (Minaee 
et al., 2022). Intersection over Union (IoU) is calculated as the area of 
overlap between the predicted segmentation and the reference geome
try, divided by the area of their union, providing a measure of how well 
the predicted segmentation matches the reference geometry (Rahman 
and Wang, 2016). Pixel Accuracy, defined as the ratio of correctly 
classified pixels to the total number of pixels, indicates the percentage of 
pixels that were accurately labeled. The Dice Coefficient, calculated as 
twice the area of overlap between the predicted and reference seg
mentations divided by the total number of pixels in both, is often used to 
assess the similarity between two segmentations. Because greenhouses 
represent a small fraction of the landscape, we adopted a stratified 
sampling approach to generate validation samples for calculating these 
metrics. Using the land cover map derived from PlanetScope imagery, 
we randomly selected 500 segments each from areas identified as 
greenhouses and non-greenhouses. SkySat imagery was then used to 
visually interpret and label these 1,000 segments, capturing both 

pre-war conditions and monthly damage since the onset of the war. Each 
segment was labeled either as a greenhouse or non-greenhouse. If a 
segment contained both greenhouses and other land cover types, it was 
labeled as non-greenhouse. To validate the generated greenhouse 
damage map, we randomly selected 10% of the identified greenhouses 
and labeled each as either damaged or undamaged. For damaged 
greenhouses, we recorded the month when the damage first occurred 
based on visual interpretation of the SkySat and PlanetScope imagery, 
following the same criteria used in the greenhouse damage mapping 
process (Fig. 4).

We compared both our map and area estimates with those from 
UNOSAT’s analysis (FAO UNOSAT, 2024). Since UNOSAT’s map in
cludes all cropland types at a 10-m resolution, we resampled it to 3-m 
resolution using nearest-neighbor sampling to align with our 
PlanetScope-derived tree crop damage map. We then focused on pixels 
representing either damaged or undamaged tree crops based on our 
PlanetScope-derived map. We used our set of 1,200 accuracy assessment 
samples for tree crop damage to evaluate the accuracy of UNOSAT’s 
map. Additionally, we compared greenhouse damage estimates, but 
since the raw data from UNOSAT’s greenhouse analysis is publicly un
available, our comparison was limited to percentages of reported 
damage.

3. Results

3.1. Tree crops and their damage during the war

Before the war began in October 2023, tree crops covered 23% 
(8,242 ± 323 ha) of the entire Gaza Strip. Among the five governorates, 
Khan Yunis had the largest share of tree crop fields (2102 ± 167 ha) and 
Rafah had the smallest area of tree crops, covering only 10% (619 ± 185 
ha) of its territory (Fig. 5). Tree crop classification across all governor
ates achieved a Producer’s Accuracy (PA) and User’s Accuracy (UA) 
above 90%, except in Rafah, where PA and UA were 79% and 78%, 
respectively. This lower accuracy is largely due to Rafah’s drier envi
ronment and the sparse distribution of individual trees within fields, 
which led to confusion between tree crops and barren land.

We found that 64–70% (5,305–5,795 ha) of tree crop fields in Gaza 
were damaged at a 95% confidence interval between October 2023 and 
September 2024, with significant spatial variations (Fig. 6). Among the 
governorates, Gaza City experienced the highest degree of damage, with 
over 90% of tree crop fields lost, followed by North Gaza (73%), Khan 
Yunis (52%), Deir al-Balah (50%), and Rafah (42%). In addition to the 

Fig. 3. Segment output from the SAM model (left) and identified greenhouses based on the pre-war PlanetScope-derived land cover map (right). Pixels representing 
greenhouses in the pre-war land cover map are shown in blue.
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spatial differences, the damage also displayed clear temporal dynamics. 
Most of the damage occurred between November 2023 and January 
2024 (Fig. 7). In February, the damage significantly declined, followed 
by a steady increase until June 2024. In recent months, from July to 
September 2024, less damage was observed. North Gaza and Gaza City 
saw rapid increases in damage, with nearly 50% of tree crops damaged 
before the end of 2023 (Fig. 7). Since November 2023, Deir al-Balah and 
Khan Yunis have experienced steady tree crop loss, though at a slower 
rate. After May 2024, most governorates, except for Rafah, experienced 
a slower rate of damage. In Rafah, however, the damage to tree crops 
started later, i.e. April 2024, but has been increasing ever since.

The overall mapping accuracy of the tree crop damage maps is 88% 
± 1%, with varying PA and UA across different damage classes (Fig. 8). 
The lowest accuracy was observed for the damage in February 2024, 

when both UA and PA were below 20%, followed by the damage classes 
in May and June 2024. Mapping accuracy improved when all monthly 
damage classes were aggregated into a single class, resulting in a new 
map with three categories: non-tree crops, undamaged tree crops, and 
damaged tree crops. The overall accuracy of this aggregated map is 96% 
± 1%, with a PA of 97% and a UA of 82% for the damaged tree crops.

3.2. Greenhouses and their damage during the war

We identified 7,219 greenhouses larger than 81 m2 (equivalent to 3 
× 3 PlanetScope pixels) present before the onset of war in October 2023. 
The average greenhouse size was 1,386 m2, with a median size of 1,104 
m2. Most greenhouses were located in southern and central Gaza, with 
Khan Yunis having the highest number (2,708), followed by Rafah 

Fig. 4. SkySat imagery © 2025 Planet Labs PBC illustrating damage to tree crops (top panel) and greenhouses (bottom panel) in the Gaza Strip.

Fig. 5. Area (ha) and proportion of tree crops (%) relative to the total territory in each governorate of the Gaza Strip before October 2023. The error bars indicate the 
estimate at a 95% confidence interval.
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(2,603), and Deir al-Balah (1,257). Accuracy metrics indicate reliable 
identification of greenhouses, with an IoU of 0.91, Pixel Accuracy of 
0.99, and a Dice Coefficient of 0.94.

We found that 58% of all greenhouses in the Gaza Strip had been 
damaged by September 2024. Similar to the damage to tree crops, there 
are significant spatial and temporal variations in the extent of green
house damage (Figs. 9 and 10). Overall, the most severe damage to 
greenhouses occurred during November and December 2023. In the 
early stages of the war, e.g., October–November 2023, greenhouses in 
North Gaza and Gaza Governorates were primarily affected, while 
damage in the three other governorates began later. By the end of 2023, 

all greenhouses in North Gaza and Gaza Governorates had been 
damaged. Since November 2023, greenhouse damage in the other gov
ernorates has steadily increased. Unlike the damage to tree crops, the 
damage to greenhouses has continued to rise in recent months, espe
cially in Rafah, which saw a significant increase in damage in September 
2024.

The overall mapping accuracy of the greenhouse damage maps is 
73%, with varying PA and UA across different damage classes (Fig. 11). 
The median PA and UA for the damage classes are 76% and 72%, 
respectively. Mapping accuracy improved when the monthly damage 
classes were aggregated into a single class, leading to an overall 

Fig. 6. Spatial pattern of tree crops damage at monthly intervals from October 2023 to September 2024. The months in which damage first occurred are in blue and 
purple colors, while undamaged tree crops are shown in green.

H. Yin et al.                                                                                                                                                                                                                                      Science of Remote Sensing 11 (2025) 100199 

7 



accuracy of 86% for the aggregated map.

3.3. Comparison with UNOSAT’s maps and estimate

Our tree crop damage estimate (64–70%, 5,305–5,795 ha) is slightly 
lower than that from UNOSAT, which estimated that 71% of orchards 
and other trees were damaged until September 1, 2024. However, 
considerable disagreement exists in terms of the spatial distributions of 

the tree crops (Fig. 12). Of all damaged pixels both mapped in this study 
and from UNOSAT, only 39% of pixels shared the same month when 
damage first occurred. Using our 1,200 accuracy assessment samples 
(section 2.3.3), we examined the areas that had a disagreement and 
found that the UNOSAT map had a lower mapping accuracy (overall 
accuracy = 50%), with much lower mapping accuracy for specific 
months of damage (median PA and UA of 0.2).

In terms of greenhouse damage, UNOSAT’s product detected a lower 

Fig. 7. Monthly rates of tree crop damage in the Gaza Strip (top) and cumulative damage per governorate (bottom) between October 2023 and September 2024.

Fig. 8. Producer’s accuracy (PA) and user’s accuracy (UA) of the tree crop fields damage map.
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amount of damage (44%) compared to our estimate (58%). However, it 
is important to note that the definition of greenhouse damage used in 
UNOSAT’s product is unclear. When examining the damage at the 
governorate level, both UNOSAT’s product and our study found that 
nearly all greenhouses in Gaza City were damaged.

4. Discussion

4.1. Mapping damages to tree crops and greenhouses

In this study, we utilized imagery from PlanetScope and SkySat to 
map pre-war distributions of tree crop fields and greenhouses in the 

Gaza Strip, as well as assess the damage sustained during the conflict. 
The choice of these data sources was well-suited to the Gaza Strip’s 
fragmented and diverse landscape. Given the ongoing conflict, produc
ing near real-time estimates of damage is crucial for raising awareness of 
the war’s impacts. PlanetScope’s daily observations demonstrated their 
potential for near real-time monitoring, consistent with other applica
tions, particularly in forest monitoring (Francini et al., 2020; Keay et al., 
2023).

Our damage assessment of tree crops achieved an overall accuracy of 
88%, though errors persisted in detecting the timing of the damage. This 
was primarily due to several factors. First, the diversity of tree crops and 
their varying management practices pose challenges to their mapping. 

Fig. 9. Greenhouses and the date of initial damage in the Gaza Strip between October 2023 and September 2024.
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In drier areas, such as in Rafah, more sparse and shorter trees resulted in 
spectral reflectance dominated by bare soil, making detection difficult. 
Similarly, young or newly planted orchards are difficult to map. Incor
porating texture information from PlanetScope imagery with deep 
learning models, may improve the accuracy of tree crop mapping (Lin 
et al., 2021). Second, the rainy season and ongoing conflict limited 
clear-sky satellite observations. Although PlanetScope provides daily 
imagery, frequent clouds during the Mediterranean winter created data 
gaps, even for weeks. Additionally, frequent black smoke from 
war-related fires further obstructed imagery. Despite our efforts to 
remove contaminated pixels, it remains difficult to mask out all types of 
smoke, leading to false positives, especially when observation oppor
tunities are limited. Using SAR imagery, such as commercial VHR 
X-band data, could help overcome these challenges.

For greenhouse mapping, we achieved reliable results by leveraging 
both SkySat and PlanetScope imagery, with an IoU of 0.91, Pixel Ac
curacy of 0.99, and a Dice Coefficient of 0.94. While other deep learning 
algorithms exist, we chose the SAM model due to its minimal input re
quirements. Alternative encoder-decoder structure models, such as U- 
Net (Chen et al., 2021), ResNet (Li et al., 2022), and EGENet (Chen et al., 
2023) may also support reliable monitoring of greenhouses. Further 
improvement of the SAM model for greenhouse detection could involve 
using a few examples as prompts, though we did not collect additional 
prompts as our land cover maps already reliably labeled the segments, 
with accuracy assessments validating the robustness of our approach. 
Our map showed more commission than omission errors, largely due to 
the wide variety of materials used for greenhouse coverings, ranging 
from dark to light colors, which caused confusion with other objects 

Fig. 10. The rates of greenhouse crop damage in the Gaza Strip (top) and cumulative damage per governorate (bottom) between October 2023 and September 2024.

Fig. 11. Error matrix for greenhouse damage mapping. Categories include NG 
(non-greenhouses), ND (undamaged greenhouses), and specific months indi
cating the timing of the damage. For example, Oct-23 refers to greenhouses that 
were first damaged in October 2023. Larger dot sizes represent larger sam
ple sizes.
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with similar colors and shapes. While we applied a minimum spatial 
filter to remove small objects, this also excluded small and narrow 
greenhouses.

Our damage assessment for greenhouses was also reliable, with 
median PA and UA for damage classes at 76% and 72%, respectively. 
However, unique challenges existed for greenhouse damage mapping. 
For example, variations in management practices occasionally led to 
misidentifications, such as greenhouses that had temporary rooftop 
lifting, which was falsely classified as damage. Although it is not com
mon, such false positives occur. Shadows cast by surrounding buildings 
or trees also caused false positives, and PlanetScope’s 3-m resolution 
presented additional challenges due to its coarseness and potential 
geometric errors. While SkySat provides better resolution for damage 
mapping, it is not feasible to obtain SkySat imagery covering the entire 

Gaza Strip at a daily interval. Leveraging other commercial data, such as 
WorldView imagery from Maxar may improve damage mapping, yet the 
cost of such commercial imagery limits its applications.

Our estimate of tree crop damage (64–70%) closely aligns with 
UNOSAT’s estimate (71%), regarding the overall rate of damage. 
However, we observed significant differences in the spatial and tem
poral distribution of damages, with only 39% of pixels matching the 
exact month when the damage first occurred. The reasons for these 
discrepancies are difficult to pinpoint, especially given the lack of 
detailed documentation on UNOSAT’s methodology, but the coarser 
resolution of Sentinel-2 imagery may be a contributing factor. Addi
tionally, UNOSAT’s product grouped tree crops with other trees or 
shrubs, while our analysis focused on tree crops only. In addition, the 
area estimates from UNOSAT were - to the best of our knowledge - based 

Fig. 12. Comparison of tree crop damage mapped in this study and the damage mapped by UNOSAT.
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on pixel-counting, whereas we employed a sampling-based approach to 
rectify errors in the map. We therefore advise caution against using 
unvalidated maps for area estimates, as recommended by established 
guidelines (Olofsson et al., 2014; Stehman and Foody, 2019). Similarly, 
we observed more greenhouse damage (58%) than UNOSAT (44%). This 
discrepancy could be due to differences in the definition of “damage" 
and the time period covered (UNOSAT’s estimate extends until 
September 1, 2024, while ours extends until September 27, 2024). 
Despite these differences, both UNOSAT’s estimate and ours highlight 
the severe damage to agricultural land in the Gaza Strip.

Although this study focuses on the Gaza Strip, it also provides a 
framework for assessing war-induced damage to agricultural lands in 
other conflict-affected regions, particularly in the Global South, where 
agricultural plots are often fragmented (Lesiv et al., 2019). Additionally, 
the use of daily PlanetScope imagery may facilitate the monitoring of 
agricultural land with short growing seasons, particularly in regions 
such as Africa, where the growing season may last only a few months 
(Vrieling et al., 2013).

4.2. Implications

Our study estimates that 64–70% of tree crop fields have been 
damaged, significantly affecting food production in the region. The 
highest rates of damage in the North Gaza and Gaza City occurred be
tween October 2023 and January 2024, followed by similar trends in 
Deir al-Balah and Khan Yunis beginning in November 2023. Damage to 
tree crops in Rafah was observed at a slower pace, starting in February 
2024 and accelerating from April through September 2024. The chro
nology is in line with the timeline of the war that proceeded north to 
south (Asi et al., 2024; Holail et al., 2024). The damage to tree crops has 
serious implications for food security and sustainable food production as 
olives and citruses are evergreen trees that can take 5–7 years to start 
becoming productive and up to 15 years to reach maturity (Sharkawi, 
2020). This longer time for recovery of these tree species has a larger 
impact on ensuring the delivery of sustainable food systems when 
compared to the recovery of other damaged crops such as seasonal 
vegetables or grain crops. Furthermore, the majority of trees grown in 
the Gaza Strip are olive trees, (PCBS, 2023a) and olive oil is traditionally 
and historically used as a high-value stored food for subsequent years 
and periods of poor harvest or economic and political instability 
(Meneley, 2011).

Regarding crops in the greenhouses, data from the 2022 Palestinian 
census (PCBS, 2023a) documents that a wide range of vegetables and 
soft fruits were cultivated in greenhouses and fields across the Gaza 
Strip, covering an area of 61,491.17 dunums (6149.12 ha or 61.49 km2). 
Our study estimates that 58% of all structures supporting vegetables 
grown under plastic greenhouses in the Gaza Strip have been damaged, 
with total destruction reported in North Gaza and Gaza City. This has 
immediate and severe implications for food production, as this category 
represents an estimated 56.3% of the protected covers used for vegetable 
cultivation and 15.4% of the total area (including all forms of protected 
cover and open fields) utilized for growing vegetables (PCBS, 2023a).

Previous conflicts in the Gaza Strip have presented significant chal
lenges to restoring agriculture. The UN estimated $449 million USD in 
damages to the agricultural sector during the 2014 conflict (UNDP, 
2014), while the 2021 war resulted in substantial destruction of agri
cultural land as well. Yet, the level of destruction in the Gaza Strip since 
October 2023 is unprecedented, with overall estimated damages of $629 
million USD until March 2024 (World BankUNEU, 2024). Destructions 
of water wells and irrigation networks has had lasting effects on crop 
yields, and soil degradation and contamination have further impeded 
recovery. Additionally, the ongoing risk of unexploded ordnance 
threatens farmers’ access to their land, delaying the resumption of 
agricultural activities.

Our study not only provides timely information to the international 
community about the ongoing war in the Gaza Strip but also enhances 

understanding of how armed conflict disrupts local food systems. The 
findings can directly inform recovery policies by identifying priority 
areas for rehabilitation, including severely damaged farmland and 
agricultural infrastructure. Notably, infrastructure near damaged farms 
is likely to have sustained collateral damage (Fig. 4; Supplementary file, 
Figure S2), further compounding the challenges faced by the agricul
tural sector (Hoeffler, 1998). The results also highlight the need for 
targeted investments in rebuilding water management systems, 
restoring soil health, and providing technical support to farmers for 
reconstruction. Additionally, our analysis can guide efforts to safely 
clear unexploded ordnance, enabling farmers to regain access to their 
land and resume agricultural activities (Duncan et al., 2023). By 
providing accurate and timely data, our study supports evidence-based 
decision-making and helps international organizations, governments, 
and humanitarian agencies prioritize interventions that support 
rebuilding Gaza’s agricultural sector.
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